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SILVA, VANESSA SOUSA DA. LiDAR-derived methods for volume estimation and individual 

tree detection in Eucalyptus spp. plantations. 2019. Advisor: Emanuel Araújo Silva. Co-advisors: 

Carlos Alberto Silva and  Gabrielle Hambrecht Loureiro. 

 

GENERAL ABSTRACT 

Accurate and spatially explicit measurements of forest attributes are considered of great 

importance for sustainable forest management and environmental protection. Improvements in the 

management of eucalyptus plantations result in multiple industrial and environmental benefits. 

Remote sensing techniques can increase planting management efficiency by reducing or replacing 

field sampling that requires a longer time and therefore higher costs. Airborne Light Detection and 

Ranging (LiDAR) systems have become an important remote sensing technique for forest 

inventory, mainly because this technology can provide high accuracy and spatially detailed 

information on forest attributes across entire landscapes. Remote sensing data from LiDAR 

combined with machine learning techniques and automated individual tree detection algorithms 

present great potential for modeling forest attributes. This dissertation is focused on the 

comparison of predictive methods of total stem volume and number of individual trees in 

plantations of Eucalyptus spp. from LiDAR-derived data. More specifically evaluating: 1- the 

combined impact of sample size and parametric and non-parametric modeling techniques; 2- the 

accuracy of algorithms for automatic individual trees detection. The modeling technique that 

presented the best performance was verified for the OLS method, which was able to provide results 

comparable to the traditional approaches of forest inventory using only 40% of the total field plots, 

followed by the Random Forest (RF) algorithm for the same sample size. The Dalponte e Silva 

automatic detection algorithms presented more accurate results with the lowest commission and 

omission errors, and consequently better F-scores in most of the sampled plots, obtaining 

comparable results. 
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detecção individual de árvores em plantios de Eucalyptus spp. 2019. Orientador: Emanuel Araújo 

Silva. Co-orientadores: Carlos Alberto Silva e Gabrielle Hambrecht Loureiro. 

 

RESUMO GERAL 

Medições acuradas e espacialmente explícitas de atributos florestais são consideradas de suma 

importância para o manejo florestal sustentável e a proteção ambiental. Melhorias no manejo de 

plantios de eucalipto resultam em múltiplos benefícios industriais e ambientais. As técnicas de 

sensoriamento remoto podem aumentar a eficiência do gerenciamento de plantios, reduzindo ou 

substituindo a amostragem de campo que demanda um maior tempo e consequentemente maiores 

custos. Os sistemas LiDAR (Airborne Light Detection and Ranging) tornaram-se uma importante 

técnica de sensoriamento remoto para o inventário florestal, principalmente porque essa tecnologia 

pode fornecer informações de alta precisão e espacialmente detalhadas sobre os atributos da 

floresta em paisagens inteiras. Dados de sensores remotos LiDAR combinados com técnicas de 

aprendizado de máquina e algoritmos automatizados de detecção de árvores individuais 

apresentam grande potencial para modelagem e delineamento de atributos florestais em larga 

escala.  Esta dissertação está focada na comparação de métodos preditivos de volume total e de 

número de árvores individuais em plantios de Eucalyptus spp. à partir de dados derivado de sensor 

LiDAR. Mais especificamente avaliando: 1- o impacto combinado do tamanho da amostra e 

técnicas de modelagem paramétricas e não-paramétricas; 2- a acurácia de algoritmos de detecção 

automática de árvores individuais. A técnica de modelagem que apresentou o melhor desempenho 

foi verificado para o método OLS, que foi capaz de fornecer resultados comparáveis às abordagens 

tradicionais de inventário florestal usando apenas 40% do total de parcelas de campo, seguido pelo 

algoritmo Random Forest (RF) para o mesmo tamanho de amostra. Os algoritmos de detecção 

automática Dalponte e Silva apresentaram resultados mais precisos com os menores erros de 

comissão e omissão, e consequentement melhores F-scores na maioria das parcelas 

amostradas,obtendo resultados comparáveis. 

 

Palavras-chave: LiDAR, Aprendizagem de máquinas, Inventário Florestal, Sensoriamento 

Remoto. 
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1. GENERAL INTRODUCTION 

Approximately 54% of the Brazilian territory corresponds to an area with forest cover, of 

which about 60% is composed of natural forests and 40% from planted forests. Currently most of 

the timber production comes from forests planted for industrial purposes, whose area in 2017 

represented 7.84 million hectares (IBÁ, 2018). The cultivation of the genus Eucalyptus spp., for 

the production mainly of cellulose, wood panels, charcoal and firewood, occupied 5.7 million 

hectares of the area of planted trees in the country; they are mostly located in the states of Minas 

Gerais (24%), São Paulo (17%), and Mato Grosso do Sul (15%) (IBÁ, 2018). 

The growth of the forest sector in Brazil makes the short, medium- and long-term planning 

of great importance, requiring its optimization to ensure the flow of wood over time. In this 

scenario, it is evident that the forest manager needs tools to generate accurate information about 

the current forest inventory and, consequently, provide the correct modeling of future productivity 

(AVARENGA, 2012). Methodologies for the evaluation of forest potential have been improved 

by researchers and companies, with the aim of minimizing errors, reducing costs and processing 

time in obtaining data. 

The determination of the total or commercial volume of wood remains one of the most 

important variables for the diagnosis of the potential of a forest. The volumetric estimation is a 

requirement for the adequate management of a forest population, being the most used variable in 

the management, industry and commercialization (SANQUETTA; BALNINOT, 2004). The 

evaluation of the growth and production of a given species in a given site depends directly on 

variables such as the productive capacity of the site, the age of the standstill, as well as the 

dendrometric variables (CAMPOS; LEITE, 2013). 

Dendrometric variables are measurements obtained in trees, generally seeking to improve 

knowledge about the structure of the stands in which they are inserted. The most broadly used 

variables are: basal area and height. The basal area is calculated from the diameter at breast height 

(DBH) (SCOLFORO; MELLO, 2006). Knowing the basal area and the height of the trees, it is 

possible to estimate the volume of the individuals. Volumetric equations can be constructed and 

adjusted from other dendrometric variables, but an analysis is necessary to evaluate the importance 

of these variables in the proposed model (KÖHL et al., 2006). 

One of he main collection method of dendrometric parameters in Brazil is through a 

Continuous Forest Inventory (CFI), which is based on the installation of permanent plots, where 
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data such as the DBH and total height are periodically measured (SCOLFORO; MELO, 2006). 

However, it is a method considered laborious, demanding a lot of time and financial resources. In 

conventional forest inventories, errors are still included, such as bias in the measurement of 

diameters and heights, error in the manipulation of data, error in the measurement of plot area, 

which reflect in the imprecision of growth models and production, directly impacting the accuracy 

of volumetric estimates (OLIVEIRA et al., 2014).  

In order to facilitate the acquisition of more accurate dendrometric data, reducing the 

participation of the inventory in the costs of forest production, several remote sensing techniques 

have been studied to estimate the characteristics traditionally obtained through the CFI 

(ANDRADE, 2013). In the past decade, advances in remote sensing have provided new tools, 

techniques, and technologies to support forest management. The use of remote sensing for forest 

inventory today can be considered of extreme importance, because from the use of sensor images 

and their processing, it is possible to obtain more detailed information that allows to adjust 

mathematical models that express the relation of the variables of remote sensing with the variables 

of conventional inventories (OLIVEIRA, 2011). 

It is in this context that the concept of precision forestry, defined as the use of geospatial 

information tools in order to enable repeatable measurements, actions and processes to manage 

and harvest forest stands, supporting economic, environmental and sustainable decisions, is 

inserted. Through the precision forestry management, it is possible to combine geotechnologies 

with the conventional forest inventory, making possible the integration of previous forest planning 

and logging operations through a remote system (RIBEIRO, 2002). 

Remote sensing technologies have been widely utilized to characterize forest structure at 

both local and global scales. For instance, in the past two decades, LiDAR (light detection and 

ranging) remote sensing has emerged as a technology well-suited to providing accurate estimates 

of forest attributes including height, volume, basal area and biomass both in natural and industrial 

plantation forest ecosystems (HUDAK et al., 2006; LEFSKY et al., 2002; SILVA et al., 2014). 

However, even though LiDAR can quickly provide forest attributes across extensive landscapes, 

it is still mostly used for research purposes, mainly due to the high cost of data acquision and lack 

of optimized and accessible tools and methods for processing and modeling LiDAR data for 

forestry applications. Moreover, accurate prediction of forest attributes from LiDAR is highly 

dependent on methods.  
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A relevant aspect in the development of the estimates refers to the method used to construct 

the predictive models. Regression is the standard model adjustment tool for the various forest 

measurement tasks. However, in the last few years an important statistical development has been 

taking advantage of the current computational power, as well as making use of the various 

information available in large databases, which is not possible with most models based on 

traditional regression, due to their low flexibility and rigidity (MONTAÑO, 2016). The use of  

machine learning techniques, a subdivision of artificial intelligence, that uses sophisticated 

architecture algorithms such as Random Forest (RF), Support Vector Machine (SVM) and 

Artificial Neural Networks Neural Network - ANN), have demonstrated great capacity for 

constructing more complex models, such as multivariate nonlinear regression and nonparametric 

regression (LARY et al., 2016). 

In view of the above, the search of methodologies that provide an improvement in the data 

acquisition for vegetation studies is a necessity, in order to establish alternatives that guarantee 

results satisfactorily similar to those obtained by traditional methods, reducing the time and 

quantity of resources. This is particularly true in developing nations such as Brazil, where 

applications of lidar are in the early stages. The airborne LiDAR system proves to be a promising 

tool for surveying qualitative-quantitative metrics of forest stands, thus justifying this type of study 

as a viability strategy for the remote forest inventory, in order to allow improvements in the 

production planning processes in Eucalyptus stands. The research presented in this dissertation is 

therefore focused upon further development of strategies to promote sustainable management of 

industrial eucalyptus plantation forests. Specifically, the main goal of this dissertation is to assess 

novel methods for forest inventory attributes prediction and mapping at individual tree and plot 

levels from lidar remote sensing data. 
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2. LITERATURE REVIEW 

 

2.1. The Eucalyptus Genus 

About 5.7 million hectares in Brazil are covered by eucalyptus. The planted forests in the 

country are basically destined to the production of pulp and paper, firewood and charcoal, 

reconstituted wood panels, laminate floors and solid wood products (IBÁ, 2018). The cultivation 

of Eucalyptus genus on an economic scale in Brazil occurred in 1904, with the introduction of 144 

species to meet the demands of wood for railway roads construction (VALVERDE, 2007). As of 

1965, with the law of fiscal incentives for reforestation, the area of Eucalyptus planted in Brazil 

increased from 500 thousand to three million hectares (TRUGILHO, et al., 2001).  

The Eucalyptus genus belongs to the Myrtaceae family and is originated from the islands 

of Oceania. The species belonging to this genus are considered as fast growing and are suitable for 

management in coppice, allowing the regrowth to be driven for more than two rotations. The genus 

has more than 500 identified species that adapts and grows satisfactorily in the most diverse 

regions of the world in different environmental conditions (HASELEIN et al., 2005; IBÁ, 2018; 

VALVERDE, 2007). In tropical regions such as Brazil, the cutting cycles of Eucalyptus 

plantations range from 5 to 7 years (GUEDES et al., 2015; SCOLFORO et al., 2016). As a result 

of its characteristics, eucalyptus is one of the most planted trees in the world, as it is a species of 

easy adaptation to the most diverse climatic and soil conditions, besides the many forms of wood 

utilization by the industry (MARTINS et al., 2006; SILVA et al., 2009). 

As a consequence of the economic importance of these species, it was necessary its genetic 

improvement, in order to increase its productivity through more productive genotypes, to adapt 

the raw material to its final destination, to increase disease resistance and the tolerance to abiotic 

and climatic stresses (GOLLE et al., 2009; GONÇALEZ et al., 2014; PEREIRA et al., 2000). 

Hybridization and cloning have been the main drivers of Brazilian forest development, since this 

is considered a viable solution for the country's many demands for wood. The most widespread 

hybrid in Brazil comes from the crossing of Eucalyptus urophylla x Eucalyptus grandis. A 

breeding adapted to the most different conditions due to its tolerance to water deficit (characteristic 

of E. urophylla) and potential of rooting and field growth (characteristics of E. grandis) (NEVES 

et al., 2011; BRISOLA; DEMARCO, 2011). 
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2.2. Forest growth and production modeling  

A mathematical model is a mathematical formulation based on hypotheses, which attempts 

to represent physical or biological phenomena, in order to generate an equation that can 

quantitatively estimate such phenomenon at a given level of probability (SILVA, 2015). The 

origins of forest growth and production models date back to the late eighteenth century in Germany 

with the development of volume tables. At present, prognoses are performed with equations or 

systems of interrelated mathematical equations rather than as volume tables, a change driven by 

the popularization of computational systems (ALDANA, 2010). 

The application of mathematical modeling to the forests growth and production, whether 

planted or native, give results well known in the literature. These models help researchers and 

managers especially with the prediction or prognosis of forest yields, with the purpose of selecting 

better management options, more adequate silvicultural alternatives or forest harvesting planning 

(BURKHART; TOMÉ, 2012). Different methods can be employed to the estimation of structural 

parameters through the cloud of LiDAR points, all of them are based on allometric relationships 

between statistical metrics derived from LiDAR points related to forest canopy height and 

structural measurements obtained in the field (ANDERSON et al., 2006). 

The main method used when modeling the relationship between LiDAR and field data is 

the parametric regression (multiple linear regression). The main advantage of using this type of 

methodology is the simplicity and clarity of the resulting model. In contrast, this method also has 

some drawbacks: this process provides a set of highly correlated predictors with little physical 

justification and, as a parametric technique, it is only recommended when assumptions such as 

normality, homoscedasticity, independence and linearity are met (OSBORN; WATERS, 2002). 

 Recent studies have shown that non-parametric techniques such as machine learning tools 

can be successfully used for the estimation of forest attributes (HUDAK et al., 2008; LATIFI et 

al., 2010; SIMARD et al., 2011). The speed and ease of implementation of these approaches, 

absence of restrictive assumptions, and the ability of some to include categorical dependent and 

(or) independent variables are contributing to their increased popularity (WITTEN; FRANK, 

2000; GARCÍA-GUTIÉRREZ et al., 2015; GÖRGENS et al.,  2015; SHIN et al., 2016; LEE et al., 

2018; AYREY; HAYES, 2018).  
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2.3. Remote Sensing applied to the study of vegetation 

In terms of definition, Meneses et al.  (2012) present remote sensing as "a science that 

aims to develop the imaging of the Earth's surface by quantitatively detecting and measuring the 

responses of electromagnetic radiation interactions with the terrestrial materials ". However, the 

use of remote sensing techniques does not always allow obtaining images, but other types of data. 

In general, remote sensing can be understood as the set of techniques for obtaining data about a 

given target, so that the sensor is at a remote distance from it and therefore, there is no physical 

contact between the two (FIGUEIREDO, 2005). 

Novo (2008) comments that currently available remote sensing systems provide consistent 

data of the Earth's surface, which are of great utility for various applications. Concerning 

ecological and vegetation applications, Blaschke and Kux (2007) point out that reliable spatial data 

and landscape ecology parameters are of great importance for the tasks of protecting and 

developing the environment and nature. Research related to vegetation enables the understanding 

of the structure and dynamics of plant formations, besides supporting the planning of actions that 

subsidize the management and preservation of natural environments (FLORENZANO, 2011). 

Formigoni et al. (2011) state that the monitoring of vegetation cover using remote sensing 

products and techniques is based on the need to analyze plant resources, contributing to the 

temporal monitoring and obtaining information such as the distribution of vegetation types, 

phenology, canopy structure, stress conditions and changes in soil use. The development of remote 

sensing techniques has allowed the acquisition of diverse information about the terrestrial surface, 

contributing mainly to the investigations of the biophysical parameters of the vegetation, such as 

Foliar Area Index (LAI), percentage of green cover, chlorophyll content and even its detailed three-

dimensional configurations, supporting the temporal, edaphic and phenological analyzes of the 

vegetation (VIGANÓ et al., 2011). 

To Cintra (2007), forest management based on accurate spatial information favors the 

decision-making process in the following aspects: increasing the availability and quality of 

information, facilitating the developed activities; greater agility in the understanding of 

phenomena and processes; reduces the  risk of errors, increasing the reliability of decisions; 

generate faster and more precise decisions, in addition to localized interventions, becoming 

possible elements of cost reduction. 
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2.4. LiDAR 

The function of a remote sensor is to capture and measure the amount of energy reflected 

and/or emitted by targets, and thus obtain information about the nature and conditions of these 

targets, associating them with the real world (CENTENO, 2004). The spectral, spatial and texture 

information of the acquired images of passive sensors (i.e. aerial photographs and satellite 

imagery) are the main components used in the characterization of the forest. However, these 

attributes are related only to the horizontal structures of the forest, being insensitive to the 

measurements of the vertical structures (GOETZ et al., 2009). Another use limitation of passive 

sensors is its dependence on the sun as a source of illumination, thus data analysis can be impaired 

by the presence of clouds, which may be constant in some regions (D’OLIVEIRA et al., 2014). 

One solution to these limitations is the use of active sensors, which use their own energy 

source, such as Light Detection and Ranging (LiDAR). In case of LiDAR, the light source is the 

laser, which emits short-wave electromagnetic radiation (1-10 μm), considered a direct method in 

data capture. The differential of this sensor is in its ability to obtain three-dimensional 

characteristics of the analyzed targets, which allows to calculate both horizontal and vertical 

structures of the forest, such as height, topography below the canopy of trees and distribution 

(HOLMGREN et al., 2003). Another important feature of this sensor is that laser pulses can 

penetrate through small openings in the forest canopy and provide accurate topography maps with 

high resolution, precise estimates of height and vegetation overlap, among other aspects of treetops 

(COOPS et al., 2007). 

The technique of airborne LiDAR imaging consists of the emission of laser pulses directed 

to the ground by a mirror in a direction transverse to the direction of the flight line and the 

simultaneous measurement of the round-trip time of the energy of a pulse between the sensor and 

the target. This incident energy pulse interacts with the tree canopy (leaves, branches and trunk) 

and the ground surface, returning to the instrument. The time interval from the movement of the 

pulse from the beginning to its return to the sensor is measured, providing the distance between 

the instrument and the object (JENSEN, 2011). 

When you reach objects without a well-defined surface, a laser signal can produce multiple 

reflection registers (returns or pulses). For forest studies the most important are the first and the 

last. The first return refers to the canopy top surface of the forest, it provides information from the 

higher portion of the objects and is used to model the canopy surface. The last return is reflected 
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at the lowest level reached by the laser and is used for the terrain modeling. This allows the 

separation of the vegetation from the soil surface to generate the digital height models (COELHO; 

VARGAS, 2007; JENSEN, 2011). 

Each laser point projected on the ground has its planimetric coordinates and surface 

elevation measurements recorded. The planimetric coordinates of latitude and longitude of the 

laser points are obtained by means of the exact synchronization of an integrated orientation and 

position system, composed by a Differential Global Positioning System (DGPS) an Inertial 

Measurement Unit (IMU), and the data of the laser (CASTRO, CENTENO, 2005). In addition to 

the planimetric coordinates, the system stores, for each mapped point, the reflectance value of the 

target materials. It is possible, through this information, to generate orthoimages of intensity and 

hypsometry (intensity combined with altimetric information) (ZANDONÁ et al., 2008). 

As a result of the survey, a cloud of laser scan points, or data set with XYZ coordinates, 

can be used to generate a computational model of the reflected surface below. After clipping the 

LiDAR points cloud (based on georeferenced field plots), statistics metrics are then extracted from 

this cloud and linked to the forest attributes measured in field plots. These extracted statistics are 

referred to specific metrics grouped in terms of height and density. The height metrics consist 

primarily of measures of location (i.e. mean, median, percentiles) and measures of dispersion (e.g. 

standard deviation, interquartile range, variance). The density metrics compute ratios of returns 

above a height break (WHITE et al., 2013).  

From the cloud of points, it is also possible to obtain the Digital Surface Model (DSM) and 

the Digital Elevation Model (DEM), which, by their difference, provide accurate height data, 

generating the Digital Heights Model (DHM) or Digital Vegetation Model (DVM), considered the 

most difficult and time-consuming information to obtain in the field (CROW et al., 2007). Through 

the Digital Heights Model (DHM) it is possible to obtain direct measurements and estimates of 

important dendrometric variables of both native and planted forests. The direct measurements 

obtained from the LiDAR data are the counting of individual trees; individual tree height; crown 

diameter (characteristic with high correlation with volume and biomass) (NUTTO; SPATHELF, 

2008). In addition, it is possible to estimate other important structural features for forest 

management, such as biomass, basal area, diameter and volume through modeling techniques 

combined with direct measurements (DUBAYAH et al., 2000; NUTTO; SPATHELF, 2008). It is 

also possible to carry out a forest stratification by means of height, which can be used as an 
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auxiliary tool for the definition and allocation of field plots, reducing sample error of estimates 

(SCOLFORO; MELO, 2006). 

 

2.5. Individual Tree Detection  

LiDAR derived data have demonstrated great potential for estimating forest parameters at 

both plot level and individual tree level (VAUHKONEN et al., 2014). Data processing is usually 

initiated by filtering the point cloud for the terrain classification and the generation of a digital 

terrain model (DTM). After the generation of the DTM, the model is used for the normalization of 

the point cloud or the generation of a canopy height model (CHM), frequently used in the 

individual tree detection. The CHM is generated by the difference between the digital surface 

model (DSM), given by the interpolation of the highest points (first return of the pulse), by the 

DTM (HYYPPÄ et al., 2015).  

From the CHM, individual trees can be detected, usually through some local maxima 

algorithm (higher points), watershed segmentation, region growth, among others 

(FAVORSKAYA; JAIN, 2017). An important point to note is that it is not usually possible to 

detect all trees, especially the ones with intertwined or dominated canopies (VAN LEEUWEN; 

NIEUWENHUIS, 2010; VAUHKONEN et al., 2014), which is the main error from the individual 

tree-based methods. The detection success depends on several factors, such as the forest conditions 

(density and spatial pattern), algorithms and parameters, among others (VAUHKONEN et al., 

2014). 

The crowns delimitation is usually based on some type of segmentation, edge detection, or 

local minima algorithms (HYYPPÄ et al., 2015; VAN LEEUWEN; NIEUWENHUIS, 2010). In 

addition to the canopy delimitation, the height of the detected trees is usually extracted, based on 

the heights of the CHM, but it is common to observe an underestimation of the heights (HYYPPÄ 

et al., 2008; VAN LEEUWEN; NIEUWENHUIS, 2010). This underestimation is explained by the 

fact that LiDAR pulses reach the sides of the crowns more often than the crown's maximum point, 

especially in conifers (BALDAUF; GARCIA, 2016). 

Area-based methods (usually in plots) present a slightly different procedure, usually as a 

basic process: delimitation of the area, execution of field inventory, acquisition of LiDAR data 

and processing, adjustment of model between LiDAR data and field, and parameter estimation for 

the whole area (NÆSSET, 2014). The area-based methods are the most consolidated, and 
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considered standard in forest inventories, allowing the estimation of variables such as height, 

volume and basal area of plots (WHITE et al., 2016). Despite this, individual tree methods have 

been widely applied in the recent years and have the advantage of not requiring as much field data 

volume as it is necessary for area methods (due to the need for calibration for each case), besides 

having a good biological relation with parameters as volume (HYYPPÄ et al., 2015). Area based 

methods, on the other hand, are easier to integrate with the current system of field-applied plot 

inventories and allow for more cost-effective ALS data collection (WULDER et al., 2012), since 

individual tree methods require high densities of points (WHITE et al., 2016). 

 

2.6. Machine Learning 

In parallel to the advances in remote sensing, computational techniques, such as machine 

learning algorithms (MLA), have been increasingly used to model spectral and biological data. 

Machine learning is a method of data analysis that automates analytical model building. It is a 

branch of artificial intelligence based on the idea that systems can learn from data, identify patterns 

and make decisions with minimal human intervention (BREIMAN, 2001). Typically, machine 

learning algorithms try to describe the procedure of learning and show what is learned and express 

it as a set of rules. One of the most widely used learning procedure is the so-called supervised 

learning, where data are splitted in to input and target group in which it tries to map input data to 

target values in which input data are training data. A model which presented into learning process 

try to make a prediction and is corrected when those predictions are wrong. In this way training 

process continues until the model achieves a desired level of accuracy on the training data 

(BROWNLEE, 2013). 

These techniques are able to overcome the difficulties of classical statistical methods such 

as spatial correlation, non-linearity of data, and overfitting (WERE et al., 2015). An additional 

advantage is that machine learning allows the user to implement a continuous learning process. 

Previous remote sensing studies have shown a superior or promising level of performance by 

machine learning techniques over more classical methods (FANG et al., 2003; ATZBERGER, 

2004; DURBHA et al., 2007; ZHAO et al., 2008; ZHAO et al., 2011). These studies highlight the 

benefits of applying more robust techniques in solving problems previously resolved by traditional 

statistical modelling. 
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Machine Learning contains different algorithms in base of type of learning. In this study four 

different supervised machine learning algorithms were analyzed: k-nearest neighbors (k-NN), 

random forest (RF), support vector machine (SVM) and artificial neural networks (NNT): 

i. The k-NN algorithm uses a set of predictor feature variables (X) to match each target pixel 

to a number (k) of most similar (nearest neighbors or NN) reference pixels for which values 

of response variables (Y) are known (MCROBERTS, 2012). It allows estimating a variable 

of interest through a weighted average of the known variables of the k-nearest neighboring 

plots. The weighted average could be done using either an inverse distance weighting or 

the square of the inverse distance (MCROBERTS, 2013). Examples of forest applications 

using k-NN imputation, including mathematical formulation may be found in Hudak et al. 

(2008), Racine et al. (2014), and Fekety et al. (2014). 

ii. The RF algorithm, initially proposed by Breiman (2001), is an ensemble method that 

generates a set of individually trained decision trees and combines their results. The 

greatest advantage of these decision trees as regression methods is that they are able to 

accurately describe complex relationships among multiple variables, and by aggregating 

these decision trees, more accurate solutions are generated (GLEASON; IM, 2012). In 

addition to these characteristics, RF is an easy parameterization method (IMMITZER et 

al., 2012). This method has shown great potential in regression studies, in some cases 

generating better results than conventional techniques (GARCÍA-GUTIÉRREZ et al., 

2015; GÖRGENS et al., 2015; WU et al., 2016). 

iii. SVMs operate by assuming that each set of inputs will have a unique relation to the 

response variable and that the grouping and the relation of these predictors to one another 

is sufficient to identify rules that can be used to predict the response variable from new 

input sets. For this, SVMs project the input space data into a feature space with a much 

larger dimension, enabling linearly non-separable data to become separable in the feature 

space. This method has been successfully used in forestry classification and regression 

problems (SHAO; LUNETTA 2012; GARCÍA-GUTIÉRREZ et al., 2015; WU et al., 

2016).  

iv. NNTs are a parallel-distributed information processing system that simulates the working 

of neurons in the human brain, being able to learn from examples. Artificial neural 

networks are widely used to model complex and non-linear relations between inputs and 
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outputs or to determine patterns in data (DIAMANTOPOULOU, 2012). The use of this 

technique in conjunction with remote sensing data is consolidated in several studies 

(CLUTER et al., 2012; GARCÍA-GUTIÉRREZ et al., 2015; RODRIGUEZ-GALIANO et 

al., 2015; WERE et al. 2015). 
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SILVA, VANESSA SOUSA DA. Combined impact of sample size and modeling techniques for 

predicting volume in Eucalyptus spp. plantations from LiDAR. 2019. Advisor: Emanuel Araújo 

Silva. Co-Advisors: Carlos Alberto Silva e Gabrielle Hambrecht Loureiro. 

 

ABSTRACT 

Current forest growing stock inventory methods used in Eucalyptus spp. plantations in Brazil are 

based on statistical methods using field measurements of trees on sample plots. Such 

measurements are carried out with traditional methods and equipment. Nowadays, Light Detection 

and Ranging (LiDAR) remote sensing has been established as one of the promising and primary 

tools for large-scale forest characterization and mapping. The analysis of LiDAR remote sensing 

information combined with field data has been used by several authors to support forest 

management. Continuous advances in computational techniques, such as machine learning 

algorithms, have been increasingly used to model biological data attaining highly accurate forest 

attributes estimations. While there have been previous studies exploring the use of LiDAR and 

machine learning algorithm for forest inventory modeling no studies yet have demonstrated the 

combined impact of sample size and different modeling techniques for predicting and mapping 

stem total volume in industrial Eucalyptus spp. plantations. This study aimed to compare the 

effects of ten parametric and nonparametric modeling methods for estimating volume in 

Eucalyptus forest plantation using airbone LiDAR data while varying the reference data (sample) 

size. The study was conducted at the municipalities of Pilar do Sul and São Miguel Arcanjo, 

southeast region of the state of São Paulo, Brazil, based on LiDAR survey and field inventory. The 

modeling techniques were compared in terms of RMSE, Bias and R² with 500 simulations. The 

best performance was verified for the OLS method, which was able to provide comparable results 

to the traditional forest inventory approaches using only 40% of the total field plots, followed by 

the random forest (RF) algorithm with identical sample size value. 

 

Key-words:— LiDAR, Eucalyptus,Volume, Machine learning, Remote Sensing. 
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SILVA, VANESSA SOUSA DA. Impacto combinado do tamanho da amostra e técnicas de 

modelagem para predição volumétrica em plantios de Eucalyptus spp. a partir de dados LiDAR. 

2018. Orientador: Emanuel Araújo Silva. Co-orientadores: Carlos Alberto Silva e Gabrielle 

Hambrecht Loureiro. 

 

RESUMO 

Os atuais métodos de inventário de estoque florestal usados em plantações de Eucalyptus spp. no 

Brasil são baseados em métodos estatísticos usando medições de campo de árvores em amostras. 

Tais medições são realizadas com métodos e equipamentos tradicionais. Atualmente, o 

sensoriamento remoto com sensor LiDAR (Light Detection and Ranging) foi estabelecido como 

uma das ferramentas promissoras e primárias para a caracterização e mapeamento de florestas em 

larga escala. A análise de informações de sensoriamento remoto LiDAR combinada com dados de 

campo tem sido usada por vários autores para apoiar o manejo florestal. Avanços contínuos em 

técnicas computacionais, como algoritmos de aprendizado de máquina (machine learning), têm 

sido cada vez mais usados para modelar dados biológicos, obtendo estimativas de atributos 

florestais altamente precisos. Embora tenha havido estudos anteriores explorando o uso de LiDAR 

e algoritmos de aprendizado de máquina para modelagem de inventário florestal, nenhum estudo 

demonstrou o impacto combinado do tamanho da amostra e diferentes técnicas de modelagem para 

prever e mapear o volume total em plantios de Eucalyptus spp. O objetivo deste estudo foi 

comparar os efeitos de dez métodos de modelagem paramétrica e não-paramétrica para estimar o 

volume em plantio de florestas de eucalipto utilizando dados de LiDAR aerotransportado, variando 

o tamanho dos dados de referência (amostra). O estudo foi realizado nos municípios de Pilar do 

Sul e São Miguel Arcanjo, região sudeste do estado de São Paulo, Brasil, com base em 

levantamento LiDAR e inventário de campo. As técnicas de modelagem foram comparadas em 

termos de RMSE, Bias e R² com 500 simulações. O melhor desempenho foi verificado para o 

método OLS, que foi capaz de fornecer resultados comparáveis às abordagens tradicionais de 

inventário florestal usando apenas 40% do total de parcelas de campo, seguido pelo algoritmo 

Random Forest (RF) com valor de tamanho de amostra idêntico. 

 

Palavras-chave:— LiDAR, Eucalyptus, Volume, Aprendizado de máquina, Sensoriamento 

Remoto. 
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1. INTRODUCTION 

The area of land covered with planted forests is growing worldwide. According to FAO 

(2015), since 1990, tropical and subtropical regions have been experiencing particularly rapid rates 

of forest plantation expansion, mostly in countries in Asia and South America by 4.3 million 

ha/year. Planted forests correspond to an estimated 7% of the global forest area and cover an area 

of 264 million ha (BROTTO et al., 2016). Timber production is the main ecosystem service of 

planted forests and the main management objective for these plantations (GAO et al., 2016). 

Members of eucalyptus are now among the most valuable and widely planted hardwoods 

(ROCKWOOD et al., 2008). In Brazil, the area of Eucalyptus plantations has dramatically risen 

in the last few decades. Because of its high growth rate, Eucalyptus spp. became the major short 

fiber source of raw material primarily to supply the pulp and paper industries in southeast Brazil. 

Currently, eucalyptus plantations occupy around 5.7 million hectares (71.9% of the total planted 

forest area in Brazil) and represent 17% of the harvested wood in the world (IBÁ, 2018). 

The correct determination of stand productivity is essential to support forest management 

planning strategies (GONZÁLEZ-GARCÍA et al., 2015; RETSLAFF et al., 2015). Traditionally, 

productivity assessments and optimal harvesting time predictions are carried out based on field 

measurements of the diameter at breast height (DBH) and tree height via forest inventory. 

However, in fast-growing plantations, field-based inventory is an expensive, extremely time 

consuming and labor-intensive task, which may not even be sufficient to identify problematic 

conditions, such as those arising from losses due to pest and disease attacks or from climatic 

anomalies (GONZÁLEZ-GARCÍA et al., 2015, SCOLFORO et al., 2016).  

In the past decade, advances in remote sensing have provided new tools, techniques, and 

technologies to support forest management. Thus, low-cost and accurate forest productivity 

assessment can be made, as well as allowing the collection of information in areas not sampled by 

forest inventory (MORGENROTH; VISSER, 2013). Light Detection and Ranging (LiDAR) 

remote sensing has been established as one of the promising and primary tools for broad-scale 

forest characterization (MONTAGHI et al., 2013). LiDAR data can be used to characterize local 

to regional spatial extents with high enough resolution to quantify the three-dimensional 

information of vertical and horizontal forest structures and the underlying topography with the 

support of efficiently collected field data and several statistical methods (NÆSSET, 2004; WHITE 

et al., 2013; SILVA et al., 2016). 
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The analysis of LiDAR remote sensing information combined with field data has been used 

by several authors to produce highly accurate retrievals of tree density, stem total and assortment 

volumes, basal area, aboveground carbon, and leaf area index, and thereby can be an effective way 

to predict and map forest attributes at unsampled locations ( LEFSKY et al., 2005; LATIFI et al., 

2010; SILVA et al., 2014, 2016, 2018; DOS REIS et al., 2018). (SILVA et al., 2016) estimated the 

volume of a Eucalyptus plantation under different relief conditions in the southern region of Brazil 

from LiDAR data. The results found by these authors corroborate the potential use of data collected 

by LiDAR remote sensing to estimate the productivity of Eucalyptus plantations. 

In order to predict forest attributes aiming improved management practices for wood and 

pulp production, it is often necessary to model height, basal area and stem total volumes of 

Eucalyptus plantations in operational and experimental scenarios (GÖRGENS et al, 2015). Current 

predictive modeling methods include parametric (i.e., multiple linear regression) and non-

parametric (i.e., machine learning algorithms) approaches (SHIN et al., 2016). Multiple linear 

regression has usually been the main tool for the estimation of parameters regressed from LiDAR 

statistics. The main advantage of using this methodology is the simplicity and clarity of the 

resulting model. However, the method also has some drawbacks: it results in a set of highly 

correlated predictors with little physical justification and, as a parametric technique, it is only 

recommended when assumptions such as normality, homocedasticity, independence and linearity 

are met (WERE et al., 2015). 

The advances in computational techniques, such as machine learning algorithms, have been 

increasingly used to model biological data. These techniques are able to overcome some of the 

abovementioned difficulties of classical statistical methods. In addition, these algorithms allow the 

use of categorical data, with statistical noise and incomplete data, and thus can address needs under 

different dataset scenarios (BREIMAN, 2001). Nonparametric machine learning modeling 

techniques have proven higher ability to identify complex relationships between predictor and 

dependent variables showing therefore its superiority or promising level of performance over more 

classical statistics methods for estimating forest parameters for inventory modeling from LiDAR 

data at either plot or stand-levels (ZHAO et al., 2009; FALKOWSKI et al., 2010; ZHAO et al., 

2011; HUDAK et al., 2014; RACINE et al., 2014; SILVA et al., 2016). 

Ahmed et al. (2015) modelled a Landsat time-series data structure in conjunction with 

LiDAR data and found that the random forest algorithm achieved better results than multiple 
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regression. In another study, García-Gutiérrez et al. (2015) found that machine learning algorithms 

(mainly support vector machine) were superior for modelling LiDAR data of a range of forest 

variables (i.e., aboveground biomass, basal area, dominant height, mean height, and volume) 

compared with multiple linear regression. These studies highlight the benefits of applying more 

robust techniques in solving problems previously resolved by traditional statistical modelling. 

While there have been previous studies exploring the use of LiDAR and non-parametric 

machine learning algorithm for forest inventory modeling (LATIFI et al., 2010; PENNER et al., 

2013; VALBUENA et al., 2017; DOS REIS et al., 2018), no studies yet have demonstrated the 

combined impact of sample size and different modeling techniques for predicting and mapping 

stem total volume in industrial Eucalyptus spp. plantations. Identifying the effective sample size 

of field plots is an important issue in LiDAR-based forest inventory. However, it is unclear how 

the combined effect of sample size and data modeling (parametric and non-parametric approach) 

may impact the accuracy of the stem total volume estimation from LiDAR. 

Accurate forest inventory is of foremost importance to make operational, tactical, and 

strategic management decisions efficiently. Furthermore, the optimization of the entire supply 

chain management in pulp and paper companies maximizes its sustainability from both economic 

and environmental perspectives (FALKOWSKI et al., 2008, SILVA et al., 2016, NAKAJIMA et 

al., 2017). Therefore, to improve plantation management there is a need to develop and implement 

more accurate, repeatable, and robust frameworks for modeling and mapping forest inventory 

attributes. Moreover, efficient frameworks also play a key role in helping LiDAR technology move 

from research to operational modes, especially in industrial forest plantation settings where lidar 

applications are relatively new. 

In this context, the aim of this study was, through the integration of field-based forest 

inventory and LiDAR data, to compare the performance of parametric and nonparametric methods 

in the estimation of stem total volume in industrial Eucalyptus spp. plantations while assessing 

how the combined effect of sample size and different modeling techniques may impact the 

accuracy of the predictions. This investigation was based on the hypothesis that LiDAR technology 

and machine learning algorithms can facilitate accurate and precise volumetric inferences in 

Eucalyptus spp. plantations in southeast Brazil. 
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2. MATERIALS AND METHODS 

2.1.Study Area 

The study area consisted of three farms located in the municipalities of Pilar do Sul and São 

Miguel Arcanjo, southeast region of the state of São Paulo, Brazil (Fig. 1). The climate of the 

region is characterized as humid subtropical, with wet and hot summers and dry and cold winters. 

Mean annual precipitation is ~1700 mm; mean annual temperature is 18.8 °C (ALVARES et al., 

2013). The topography in the selected plantations is complex, ranging from mildly to very hilly 

with an elevation ranging from 659 m to 1210 m. The soils of the region are predominantly red 

and yellow red latosol, all are clayey or very clayey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of study area and plots. (A) Brazil and São Paulo State; (B) São Paulo 

State and the municipalities of Pilar do Sul and São Miguel Arcanjo; (C) Study area within the 

municipalities of Pilar do Sul and São Miguel Arcanjo; (D) Field plots in the study area. 

 

The farms contained industrial Eucalyptus plantations managed by Suzano S.A., a pulp and 

paper company located in São Paulo state, Brazil. The plantations were composed of hybrid 

clones of two Eucalyptus species, Eucalyptus grandis W. Hill ex Maid and Eucalyptus urophylla 

S.T. Blake. All the trees were planted predominantly in a 3m x 2m grid configuration, resulting 
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in an average density of 1,667 trees ha-1. Stand age across the farms was variable and ranged from 

2 to 6 years. 

 

2.2.Field Data 

The study was based on data collected in a set of temporary and permanent sample plots 

installed for the purpose of annual forest inventory by the Suzano S.A. company. A total of 158 

circular plots of 400 m² each were randomly established across the three farms. Measurements 

were carried out during the months of april to november of 2013. All the sample plots were 

georeferenced in the field using a geodetic GPS unit with differential correction capability 

(Trimble Pro-XR). The projected coordinate system used was UTM SIRGAS 2000, zone 23 S. 

In each sample plot, individual trees were measured for diameter at breast height (DBH; 

cm) at 1.30 m, and a random subsample (15%) of trees for tree heights (Ht; m). Heights of 

unmeasured trees were estimated using locally adjusted hypsometric models, which use DBH as 

the predictor of Ht, following the model below: 

ln(𝐻𝑡) =  𝛽0 +  𝛽1  ×  (
1

𝑑𝑏ℎ
) +  𝜀 

 

where ln(Ht) is the natural logarithm of tree height (m); β0 and β1 are the intercept and the slope 

of the model; dbh is the diameter at breast height (1.30 m) and ε is the random error of the model. 

Field measurements were used to estimate two additional variables in each plot: tree basal 

area (BA; m2) and stem total volume (VOL; m³). Tree-level volumes (m³ tree-1) were predicted 

by applying the respective diameter and height into the Schumacher-Hall allometric model 

adjusted for each region, rotation and genetic material, following the model below: 

 

𝑙𝑛(𝑉) =  𝛽0 +  𝛽1𝑙𝑛(𝐷𝐵𝐻) +  𝛽2𝑙𝑛(𝐻𝑡) +  𝜀    (2) 

 

where ln(V) = the natural logarithm of  stem total volume (m³); βi = model’s parameters to be 

estimated (i = 0, 1, 2); DBH = diameter (cm) at breast height (1.30 m); Ht = total height and ε = 

model’s random error.  

All the field measurements, and predictions calculations from hypsometric and allometric 

models were provided by the inventory team of Suzano S.A. The coefficients of the models are 

(1) 
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under the company's intellectual property rights and not made available to the public, however, 

the coefficients of determination (R²) and standard errors of the estimate (SEE%) for the VOL 

models used in this study ranged from 0.96 to 0.98 and 8.3 to 12.7, respectively. The total of each 

variable of all individuals were summed at plot-level and scaled to a hectare. A summary of plot-

level forest attributes including BA (m² ha-1) and VOL (m³ ha-1) calculations for each class of 

stand ages is presented in Table 1. 

 

Table 1. Summary statistics of forest attributes from ground measurement at the sample plots. 

Ages DBH (cm) Ht (m) BA (m² ha-1) VOL (m³ ha-1) N plots 

Mean SD Mean SD Mean SD Mean SD 

2.2 10.27 1.19 14.34 1.23 10.56 2.90 58.34 20.30 6 

3.2 12.75 0.88 21.83 1.05 19.36 1.90 160.35 24.77 5 

3.8 14.09 0.56 22.35 1.49 21.69 1.89 189.15 23.87 10 

4.5 15.55 1.32 25.90 0.86 26.97 2.60 280.63 39.35 5 

4.8 15.82 0.87 29.34 1.38 28.46 3.10 329.44 42.14 37 

5.1 15.36 1.06 28.62 1.67 29.48 3.33 333.35 55.23 38 

6 16.51 1.56 29.13 2.81 29.39 5.43 349.53 87.25 57 

DBH= diameter at breast height (1.30 m); Ht= total height; BA= basal area; VOL= volume; Nplots= Number of plots; SD 

standard deviation 

 

2.3.LiDAR data collection specifications and processing 

An airborne LiDAR survey was conducted in the study area on December 5th, 2013 using 

a Harrier 68i sensor (Trimble, Sunnyvale, CA, USA) mounted on a CESSNA 206 aircraft. The 

characteristics of the LiDAR data acquisition are listed in Table 2. LiDAR data processing steps 

were performed using FUSION/LDV 3.7 software (US Forest Service, Washington, DC, USA) 

(MCGAUGHEY, 2016) which provided three major outputs: the digital terrain model (DTM), 

the Digital Surface Model (DSM), and the LiDAR-derived canopy hight model (CHM). 

In order to differentiate between ground and vegetation points, the original point cloud data 

were initially filtered using a classification algorithm available in the groundfilter function in 

FUSION/LDV. The gridsurfacecreate function was used to generate the 1-meter resolution 

Digital Terrain Models (DTMs), using the classified ground returns. The canopymodel tool was 

then used to interpolate vegetation points and to generate the Digital Surface Models (DSMs). 
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The clipdata function was applied to obtain normalized heights by subtracting the DTMs 

elevations from each LiDAR return. Normalized point clouds were subset within the field sample 

plots of interest using the polyclipdata function. Canopy height models (CHM) were derived by 

subtracting the LiDAR DTM from the DSM. Structure metrics were then computed at plot and 

stand levels by the cloudmetrics and gridmetrics functions respectively, using all returns above 

1.30 m, at a grid cell resolution of 25 m. 

Table 2. Airborne LiDAR survey specifications. 

Parameter Value Parameter Value 

Scan angle (°) ±45° 

Footprint 0.33 m 

Flying altitude 438 m 

Swath width 363.11 m 

Overlap 100% (50% side-lap) 

Scan frequency  300 kHz 

Average point density 10 pts m-2 

 

From the point cloud, it is possible to compute many LiDAR metrics, however, it was 

generated only those metrics that have been often used as candidate predictors for forest attribute 

modeling in other studies (HUDAK et al., 2006; GARCÍA-GUTIÉRREZ et al., 2015; GÖRGENS 

et al., 2015; SHIN et al., 2016; SILVA et al., 2016). Therefore, a total of 26 LiDAR metrics 

calculated from all returns were considered as candidate predictor variables (Table 3). 

 

Table 3. LiDAR-derived structure metrics considered as candidate predictor variables. 

Variable Description            Variable           Description  

HMAX Height maximum  HP25 Height 25th percentile 

HMEAN Height mean  HP30  Height 30th percentile 

HMODE Height mode HP40        Height 40th percentile 

HSD Height standard deviation HP50  Height 50th percentile 

HVAR Height variance HP60  Height 60th percentile 

HCV Height coefficient of variation HP70  Height 70th percentile 

HIQ Height interquartile distance HP75  Height 75th percentile 

HSKEW Height skewness HP80  Height 80th percentile 

HKURT Height kurtosis HP90  Height 90th percentile 

HP01 Height 01th percentile HP95  Height 95th percentile 

HP05 Height 05th percentile HP99  Height 99th percentile 

HP10 Height 10th percentile CR  Canopy relief ratio (HMEAN – HMIN)/(HMAX – HMIN) 

HP20 Height 20th percentile COV  Canopy cover (% of first returns above 1.30 m) 
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2.4.Statistical Modeling 

2.4.1. Variable Selection 

The modeling techniques evaluated in this study to estimate the statistical relationship between 

plot-level stem total volume and LiDAR metrics fall into two different approaches: Parametric 

methods (i.e., multivariate linear regression) and non-parametric methods (i.e., machine learning 

regression). Parametric and non-parametric models have been proven to be useful for developing 

predictions from LiDAR derived metrics and field estimated forest structural attributes (HUDAK 

et al., 2006, 2008; LATIFI et al., 2010; SOKAL; ROHLF, 2012; GARCÍA-GUTIÉRREZ et al., 

2015; SHIN et al., 2016; SILVA et al., 2017; CAO et al., 2018). 

Even though, machine learning algorithms are usually not sensible to collinearity, normality 

or linearity, in order to obtain a set of predictor variables that could be commonly applied to all 

the selected modeling methods, it was used two variable selection approaches. First, Pearson’s 

correlation (r) analysis was carried out to identify highly correlated metrics and to exclude 

redundant predictors (r > 0.9) (HUDAK et al., 2012; SILVA et al., 2017). Second, it was 

implemented Principal component analysis (PCA) to the most relevant LiDAR-derived candidate 

metrics, to achieve a final set of predictor variables. PCA describes the variation of a set of 

multivariate data in terms of a set of uncorrelated variables, each of which is a particular linear 

combination of the original variables. Using PCA, a subset of variables that explain the majority 

of variation can be selected from a large set of (possibly highly correlated) predictor variables 

(LI et al., 2008). 

PCA was applied over the selected LiDAR metrics for each of the 158 sample plots by the 

prcomp function in R statistical package (R Development Core Team, 2015). A correlation matrix 

derived from the LiDAR metrics provided the basis for the eigenvalue and eigenvector 

calculations and for the subsequent determination of the PC scores. Each score represented a 

transformed metric from the linear combination of the LiDAR metrics of the sample plots. By 

analyzing the eigenvectors and the PC score, it could be established differences in the 

contribution of each LiDAR metric to the variability in the dataset, as well as the similarity in 

metrics calculated across the different aged stands (SILVA et al., 2016). The first five metrics 

that were most likely to contribute to the model development were identified by inspecting the 

eigenvectors in each PC. We then used the metrics with highest loading on the PCs as input 

variables for every modeling method. 
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2.4.2. Modeling Development and Assessment 

To explore the effect of sample size on prediction accuracies a classical data-splitting approach 

was adopted. We sampled subsets with different sample sizes from the full dataset where two-

thirds of the data was reserved as the training set (estimation) and the remaining one-third as the 

test set (validation). Subset sample sizes were therefore chosen in increments of 10 from 10% to 

100% of the dataset. This procedure resulted in 10 sample sizes, for each sample size we carried 

out resampling simulations to approximate the sampling distributions of estimators for 

combinations of modeling methods and sample sizes. The use of simulations is well established 

in the statistical literature, and theoretical bases for their use can be found in a variety of textbooks 

(WOLTER, 2007). Five hundred simulations were used to approximate the sampling distributions 

for each of the examined combinations. For convenience we defined our population as our 

complete sample, all 158 observations collected in the field. This approach is similar to the 

approach used by Strunk et al. (2012) to contrast several estimation approaches with LiDAR to 

demonstrate general trends and issues and is considered indicative of behavior for similar areas 

and sampling designs. For each simulation we computed and saved its corresponding 

performance  measures. The modeling methods used in this study were: 

i) Ordinary least-squares (OLS) multiple regression. The OLS regression algorithm fits a 

linear model by minimizing the residual sum of squares between the observed values 

in the training dataset and the predicted values by the linear model (CUI; GONG, 

2018). The set of prospective multiple linear models was calculated using the lm linear 

model function in R environment.   

ii) Random Forest (RF) algorithm. RF is an ensemble classifier that generates a set of 

numerous individually trained decision trees and combines their results for 

classification and regression (GLEASON; IM, 2012). The algorithm was implemented 

through R package randomForest (LIAW; WIENER, 2002). RF was adjusted to 1000 

ntree, and for the number of variables randomly sampled (mtry) as candidates at each 

split, we used the default value, which for regression is defined as p/3, where p is the 

number of covariates. For the remaining parameters, we used the default values. 

iii) k-nearest neighbors (k-NN) imputation. k-NN methods work by direct substitution 

(imputation) of measured values from sample locations (references) for locations for 

which we desire a prediction (targets). In this strategy, key considerations include the 
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distance metric that is used to identify suitable references and the number of references 

(k) that are used in a single imputation (SHIN et al., 2016).  In this study, we examined 

k = 1 neighbors for each of the mentioned distance metrics,  in order to keep the original 

variation in the data (HUDAK et al., 2008). Many imputation methods can be used for 

associating target and reference observations, we decided to evaluate six different 

distance metrics for k-NN based approach: raw, euclidean (EU), mahalanobis (MA), 

most similar neighbor (MSN), most similar neighbor 2 (MSN2), and random forest 

(RF). Imputations were performed in R using the yaImpute package (CROOKSTON; 

FINLEY, 2008), in combination with the Random Forest package (LIAW; WIENER, 

2002). 

iv) Support Vector Machine (SVM). The SVM algorithm operate by assuming that each 

set of inputs will have a unique relation to the response variable and that the grouping 

and the relation of these predictors to one another is sufficient to identify rules that can 

be used to predict the response variable from new input sets (REIS et al., 2018). SVM 

was loaded using the e1071 package (DIMITRIADOU et al., 2008). Radial Base 

Function for the Kernel function was selected. 

v) Artificial neural network (NNT). NNTs are a parallel-distributed information 

processing system that simulates the work of neurons in the human brain, being able to 

learn from examples. NNTs are widely used to model complex and non-linear relations 

between inputs and outputs or to determine patterns in data (DIAMANTOPOULOU, 

2012). The neural network in this study was set up with 7 neurons in the input layer 

(number of variables), 1 neuron in the hidden layer, and 1 neuron in the output layer, 

corresponding to the estimated volume. The initial weights were set randomly, and the 

decay parameter was set to 0.1. During the NN learning process, the weights were 

adjusted to return a result as similar as possible to the training set and to indicate the 

relative influence of the variables. The NN was implemented  in  R using the nnt 

package (VENABLES; RIPLEY, 2002). 

 

The performance assessment of the modeling methods along with the effect of the sample size 

for each simulation run, was computed via three performance measures: the root mean square 

error (RMSE) (3), which represents the estimate of the standard deviation and sample variance, 
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thus the lower the RMSE value, the better the model adjustment; the coefficient of determination 

(R²) (4), which allows to measure the model degree of explanation by measuring the total 

proportion of variation to the average; and the Bias (both absolute and relative) (5), a value 

representing the average of the residuals. The closer to zero the less biased and preferable the 

adjusted model (SCHNEIDER et al., 2009). 

 

𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏

𝒏
 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏 

∑ (𝒚𝒊 − �̅�)𝟐𝒏
𝒊=𝟏

 

𝑩𝑰𝑨𝑺 =
𝟏

𝒏
∑ (𝒚𝒊 − �̂�𝒊)

𝒏

𝒊=𝟏
 

 

where yi is the observed value for plot i, ŷi is the estimated value for plot i and n is the number of 

plots. Relative RMSE and biases (RMSEr / BIASr) were calculated by dividing the absolute 

values (Eqs. 1, 3) by the mean of the observed response parameters. It was defined acceptable 

model precision and accuracy as a relative RMSE and Bias of ≤15% to have a model precision 

and accuracy higher than or equal to the conventional forest inventory standard in fast-growing 

Eucalyptus plantations in Brazil (SILVA et al., 2017). Wilcoxon–Mann–Whitney test was 

performed to determine if the differences between the methods and sample sizes were statistically 

significative (at p = 0.05). 

 

2.5.Predictive Maps 

Predictive maps of stem total volume at 25 m of spatial resolution were generated based on the 

combination of the best modeling technique and sample size containing the selected LiDAR 

metrics according to PCA. Because we have a large number of stands in this study, the stem total 

volume at the stand level were then presented herein by stand ages of 2–3, 4–5 and 6–7 years. 

 

 

. 

(3) 

(4) 

(5) 
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3. RESULTS 

3.1.Predictor Variable Selection 

A total of 19 of the 26 lidar metrics showed a very strong correlation (r > 0.9). It was 

retained one of the highly correlated metrics (H99TH), which along with six other remaining 

metrics not highly correlated (r ≤ 0.9) were included in PCA analysis. LiDAR metrics that were 

retained after correlation analysis included HMEAN, HMODE, HCV, HKUR, H25TH, H99TH 

and COV. The correlation structure of these seven metrics is shown in Table 4. Among these, 

HMEAN, HMODE, HCV, HKUR, and COV exhibited the highest PC eigenvector loadings 

(Table 5), which represented the contribution of each LiDAR metric toward the component, and 

therefore, were used for model development. 

 

Table 4. Pearson correlations among selected LiDAR metrics 

“***”: p-value < 0.001; “**”: p-value < 0.01; “*”: p-value < 0.05; If there is no *: p-value ≥ 0.05. 

 

Table 5. Loadings and eigenvectors for the first five PCs 

 

 PCs 

Ev Eigenvectors (Eg) 
      

HMEAN HMODE HCV HKU R H25TH H99TH COV 

PC1 2.80 0.54 0.42 -0.26 0.26 0.52 0.29 -0.20 

PC2 2.47 -0.19 -0.23 -0.55 0.50 0.23 -0.51 0.23 

PC3 0.91 0.19 0.14 0.14 0.19 -0.13 0.25 0.90 

PC4 0.48 -0.29 0.84 -0.13 -0.21 -0.12 -0.36 0.08 

PC5 0.27 0.01 -0.17 -0.14 -0.71 0.58 -0.07 0.31 

PC is the given Principal Component; Ev is the eigenvalues for each PC. Bold values indicate the largest contributing 

LiDAR metric for a given PC. 

 

r HMEAN HMODE HCV HKUR H25TH H99TH COV 

HMODE 0.66 ***       

HCV -0.10 -0.02      

HKUR 0.23 0 -0.79 ***     

H25TH 0.67 *** 0.39 ** -0.69 *** 0.54 ***    

H99TH 0.76 *** 0.52 *** 0.53 *** -0.32 * 0.10   

COV -0.27 -0.24 -0.07 0.22 -0.23 -0.26  
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The first five PCs accounted for 98.9% of the total variance contained in the selected set 

of seven LiDAR metrics. PC1, PC2, PC3, PC4 and PC5 accounted for 40.0, 35.3, 12.9, 6.8 and 

3.8 per cent of the total variance, respectively (Figure 2a). We opted to use the first five PCs to 

select the best LiDAR metrics because PCs 6–7 explained a less than significant percentage (<2.5 

per cent) of the remaining variance. From Figure 2b it was found that three major groups are 

highlighted for the first two PCs. The first group representing the first principal component (PC1) 

highlights canopy height variation. Therefore, it has highly correlations with distributional metrics, 

showing positive loadings by metrics of percentile height (i.e., HMEAN and H25TH) and negative 

loading of metrics of HCV and COV. While, the second group (PC2) was mainly influenced by 

the density metrics, and PC3 highlights canopy cover.  

 

 

Figure 2. (A) The percentage of variance explained by the five PCs. (B) Projection of the first two 

PC scores from the selected LiDAR metrics. Different colors represent the visual LiDAR metrics 

different groups and levels of contribution for each PC. 

 

3.2. Combined Impact of sample size and data modeling 

 The evaluation of the modeling methods accuracy throughout the sample size was carried 

out by three performance measures indicators contemplated in Table 6. Different ranges of BIAS, 

RMSE, and R² were obtained according to both the modeling method and number of sample plots. 

Comparisons across the ten prediction methods indicated that OLS outperformed all other tested 
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methods, especially when more sample units were available. A relatively stable increase in 

accuracy and decrease in RMSEr were observed along with increasing sample size in all methods, 

but only OLS method was able to meet the acceptable model precision criteria (RMSEr and BIASr 

of ≤15%) from 20% of sample size. OLS presented R² values ranging from 0.77 - 0.85 for 20% to 

90% of sample size. RF algorithm was the second best method, reaching the acceptable precision 

criteria from 40% of sample size. RF method presented R² values in the range of 0.80 - 0.84 for 

40% to 90% of sample size.  

 SVM algorithm scored as the third best performance. This algorithm presented similar 

performance to RF algorithm, showing however lower values in all parameters evaluated. The 

algorithm was able to meet the acceptable model precision criteria (RMSEr and BIASr of ≤15%) 

from 50% of sample size, presenting  R² values ranging from 0.78 - 0.84 for 50% to 90% of sample 

size. From the six derivations of the k-NN algorithm tested, none were able to reach the acceptable 

model precision criteria using less than the full dataset. Only the RF based k-NN approach was 

able to meet the criteria while using 100% of sample size, presenting a 11.95% in RMSEr and -

1.12% in BIASr. The poorer performance in this group was found to be for the k-NN MA 

algorithm, which presented a RMSEr of 18.48%, BIASr of 1.13% and R² of 0.66. Among all the 

machine learning algorithms, NNT presented the worst performance . The statistics found for NNT 

demonstrated that this algorithm was not considered applicable to model stem volume using the 

metrics selected (R²= 0.78; RMSEr= 30.68%; BIASr= 28.06). Slight underestimation was found 

to be more frequent for most of the modeling methods and sample sizes resulting in negative bias. 

Only KNN.MA and NNT algorithms always overestimated the forest attribute of interest. 

 In summary, the best method and sample size combination (minimum sample size) to 

provide better R² values and relatively low number of outliers was found to be OLS method with 

40% of the sample size. The use of only 40% of the full dataset combined with the OLS method 

was able to provide an average of 0.82 for R², 12.95% and -0.07% for RMSEr and BIASr 

respectively. No significant improvement was found by increasing sample size from 40% to 50%, 

neither the amount of outliers were much different. Wilcox test comparing 40% with full (100%) 

dataset showed a p value > 0.05; hence, 40% and 100% had similar distributions and mean, 

evidencing no significant difference between them. Although the OLS and RF methods compared 

presented slightly different performances (OLS reduced RMSEr by 11% over RF),  when sample 

size is 40%, both methods were found to provide satisfactory results (RF40%:  R²= 0.80, RMSEr= 
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14.54%, BIASr= -0.13). Boxplots of the performance measures based on the modeling methods 

from the 500 prediction simulations are shown in Figure 3. 
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Figure 3. Boxplots of modeling methods performance measures in terms of coefficient of 

determination - R² (A), Relative Root Mean Square Error - RMSE% (B) and Relative Bias - 

BIAS% (C) derived from the 500 simulations for each different sample size. 
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4. DISCUSSION 

 LiDAR has shown to be a powerful technology for forest inventory around the world, yet 

studies exploring the application of airborne LiDAR technology for Brazilian Eucalyptus 

plantations is relatively new (CARVALHO et al., 2015; SILVA et al., 2017). On examination of 

the trends observed in previous studies, that have employed a wide range of modeling methods for 

forest attribute estimation and reported results representing varying accuracies, it is clear that 

appropriate selection of methods is paramount for attaining best prediction results (FASSNACHT 

et al., 2014; GÖRGENS et al., 2015; GARCÍA-GUTIÉRREZ et al., 2015; SHIN et al., 2016; XU 

et al., 2018). Taking this research one step further, we did an investigation on how combined 

influence of sample size and different modeling techniques affect the overall prediction accuracy 

of forest attributes and demonstrated the potential of reduced sample size in procuring accurate 

prediction results. This way, we offer expository insights and recommendations to forest managers 

and modelers for enhancing their model selection, data collection and decision-making strategies 

and thereby, assist them in optimizing cost, energy, labor and overall efficiency of the forest 

inventory operations. 

 For reducing model complexity and boosting overall prediction accuracy it is imperative to 

select fitting, yet minimal number of, parameters for developing predictive models by means of 

variable selection approaches (SILVA et al., 2016; GREGORUTTI al., 2017); this task, however, 

gets more challenging when highly correlated predictors are present. Application of dual variable 

selection approaches - Pearson’s correlation analysis and PCA - proved beneficial in our case and 

allowed us to shortlist the five major variables - HMEAN, HCV, HMODE, HKUR, and COV – 

from a total of 26 LiDAR metrics. These 5 variables, which were used for model development, 

accounted for 98.9% of the total variation contained in the pre-selected set of LIDAR metrics; 

recent studies done on Eucalyptus plantations which had applied only PCA for variable selection, 

found similar total variance contained in the selected set of LiDAR metrics (97.7%) (SILVA et al., 

2016). 

 There was a significant relationship between field-based volume estimates and LiDAR-

derived metrics selected from the PCA analysis. The selected metrics from the PCA analysis was 

consistent with previous studies that also found that mean height had the largest absolute 

correlation with the first principle component, coefficient variation of height had the largest 

absolute correlation with the second principle component, and canopy cover had the largest 
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absolute correlation with the third principal component (LI et al., 2008). Models using these three 

first principal components likely capture the fundamental allometric relationships between 

volumes and heights, as seen in results from large-footprint SLICER data (LEFSKY et al., 2005), 

in which mean height, canopy cover, and height variability were found to explain the most of 

variability in forest physical characteristics. Tesfamichael et al. (2010) and Packalen et al. (2011), 

also found that metrics such as HMEAN and HCV have shown to be effective predictors of forest 

attributes, such as stem volume, height, basal area, and aboveground carbon in Eucalyptus spp. 

plantations. The biological basis behind these results is due to the ecological and biomechanical 

links between canopy vertical structure and forest stand structure parameters. From the perspective 

of tree form and function development, there is usually a connection between the differences in 

vertical canopy structure and differences in forest volume both through forest succession and 

across areas with contrasting environmental conditions (LI et al., 2008).  

 From our results, it was evident that algorithm performance was sensitive to sampling size 

and the level of influence varied from one algorithm to another. On placing constraints (<15%) for 

RMSE values, only 4 models – SVM, k-NN, RF and OLS – were found to be feasible for making 

predictions. Among these, k-NN was further marked as impracticable, as in this case only a sample 

size greater than 90% satisfied the requirement. In case of OLS, a sample size greater than 20% 

fell within the RMSE threshold; this might be because of the low level of multicollinearity within 

the model. Whereas, for RF and SVM, the ideal sample sizes were above 40% and 50% 

respectively. In terms of bias, we noticed all the models to fall within the maximum set limit, 

which was 15%. With respect to R2 values, OLS proved to be the best among the given modeling 

methods, followed by RF and SVM respectively. Range of R2 values was also comparatively 

higher for OLS – 0.77 to 0.85 – with reference to RF – 0.75 to 0.84 - and SVM – 0.65 to 0.84 - 

methods. Also, we noticed that the increase in R2 values with increasing sample size was more 

evident in case of RF and SVM. However, this pattern was expected, considering the fact that the 

non-parametric models learn their functional form from the training data (FASSNACHT et al., 

2014; XU et al., 2018) that means, the higher the sample size, the better their prediction accuracy 

will be. This dependence on sample size, might be the reason several other non-parametric 

algorithms failed to provide satisfactory results in our case, where field plots considered were 

limited (SHIN et al., 2016; NOI; KAPPAS, 2017). 
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 Even though, for OLS, sample size above 20% met the chosen criteria, high levels of outliers 

were observed in this case as well as when the sample size was 30%. A former study done by 

Gobakken and Næsset (2008) had come up with the generalization that average standard deviation 

tends to increase with reduction of sample size, which very well matches with our findings. 

However, sample size on reaching 40% showed significant reduction in amount of outliers and a 

notable increase in R2 values. On further increase to 50% sample size, there occurred not much 

difference in the outliers count or the R2 values. Additionally, by performing wilcox test (P > 0.05), 

we confirmed that 40% and 100% were not significantly different in terms of distribution and 

mean. When sample size was 40%, RF also gave satisfactory results, even though R2 value was 

slightly lower (0.8) compared to OLS (0.82). Based on our results and core objective – which was 

to find the minimum sample size required for attribute estimation – we inferred the best 

combination to be linear regression (OLS) model with sample size of 40%, followed by random 

forests (RF) method with identical sample size value. 

 Since, there existed no extensive studies that accounted for the combined influence of 

modeling methods and sample size, evaluating the accuracy of our model in regard to established 

and identical workflows were near-impossible. Nevertheless, on comparison with studies that have 

evaluated the influence of sample size and modeling methods on a discrete basis, we noticed our 

obtained trends and accuracies of the high performing models to be quite comparable with the 

inferences made by other studies. A recent study by Sterenczak et al. (2018) had investigated the 

influence of number and size of sample plots, as well effect of a single selection, on modeling 

growing stock volume (GSV) - of a Scots pine (Pinus sylvestris L.) dominated forest in Poland 

with 900 available study plots - using airborne LiDAR data. Based on their three major findings - 

i) influence of number of sample plots on the accuracy of GSV estimation above 400 sample plots 

was nominal, ii) number of sample plot size and estimation accuracy revealed an inverse relation, 

irrespective of the number of plots considered and iii) single selection doesn’t have any impact 

when plots considered were above 400 - the authors concluded that it is possible to reduce the 

number of ground sample plots by almost one-third and still retain reasonable accuracy and 

precision levels, even when the sample plot area are relatively small. This was highly evident in 

our case as well – for sample size less than 40%. Another study done by Shin et al. (2016) 

compared the performance of 7 modeling methods - most similar neighbor (MSN) imputation, 

gradient nearest neighbor (GNN) imputation, Random Forest (RF)–based imputation, BestNN 
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imputation, ordinary least square (OLS) regression, spatial linear model (SLM), and 

geographically weighted regression (GWR) – for predicting 5 forest attributes, namely basal area 

(BA), stem volume (VOL), Lorey’s height (LOR), quadratic mean diameter (QMD), and tree 

density (DEN), from airborne LiDAR metrics. Contrary to our results, in this case, the authors 

were not able to come up with a single modeling method that always performed superior to the 

others in prediction of the forest attributes; nonetheless, OLS and SLM gave best results in terms 

of RMSE values in maximum number of cases. The authors also stressed on the importance of 

selecting a modeling technique for forest attributes based on the objectives, conditions, and scales 

that is considered; the optimal ranges for training data was found to be in the range of 100-150 for 

point prediction and 200-250 for the prediction of the whole population set. 

 The major takeaway from our study is that with LiDAR data of only 40% of the total field 

plots, we are able to make accurate predictions, given that the right modeling technique in 

employed. This, when translated into large-scale area projects, means savings of huge amount of 

money and faster processing with high accuracy. With the same amount of time, we can get more 

things done or maybe even utilize the available budgets for performing surveys at increased 

frequency. Future studies can even narrow these results by taking reducing the intervals in sample 

size (that is instead of the 10% used here, perhaps use 5% or even 1%) and repeating the same 

process. Results also highlight that multiple modeling methods work well on predictions and 

depending on the level of data in hand these methods can be selected. However, it is  incumbent 

on the modelers to keep in mind the limitations of each algorithms before applying them. For 

example, for applying linear regression models, assumptions of linear relationship, 

homoscedasticity, etc. needs to be met and this is not always true in case of several plantation data; 

in a lot of cases, since data is collected from a copious amount of sources and often has data of 

same location for multiple dates, a data hierarchy tend to exists and in this case, a mixed effects 

model need to be used to account for the random effects happening within the models 

(CRECENTE-CAMPO et al., 2010; WANG et al., 2007; HAO et al., 2015; DE SOUZA 

VISMARA et al., 2015). Therefore, a minimum knowledge of the study site and data exploratory 

analysis is recommended before making the method selection; one should also acknowledge the 

errors associated with field measurements, ALS data acquisition and data processing steps while 

interpreting the model results. Previous studies have reported minimum sample size required to 

vary with respect to the attribute and tree species under consideration. For instance, a study 
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undertaken by Kallio et al. (2010) observed the accuracy of estimated Picea abies volumes at the 

forest stand level to show no decrease until the number of plots was reduced to below 200. 

Whereas, for the case of other deciduous tree species, the volume estimation accuracy plummeted 

with gradual decrease in number of sample plots. Also, more often than not, limited field data 

and/or acquired LiDAR data quality place additional constraints on complementing studies that 

intend to evaluate the minimum sample size required for estimating accuracy of forest attributes 

using ALS metrics (STERENCZAK et al., 2018). 

 Based on our results it is seen that different algorithms perform differently to varying sample 

sizes. However, why this was the case was outside the scope of our study. Future studies focusing 

on this aspect would be able to throw more light on ideas presented. Apart from the 10 methods 

used here, other less-prominent methods, yet advancing methods like deep learning can also be 

tried in future works (GUAN et al., 2015; ZHANG et al., 2016). Here, we tested the combined 

influence of only sample size and machine learning algorithms, nonetheless, influence of 

additional features – such as plot size, LiDAR pulse density, GPS location errors, etc. – would also 

be interesting and helpful to the research community (STRUNK et al., 2012; HERNÁNDEZ-

STEFANONI et al., 2018; FASSNACHT et al., 2014). Another possible extension of this study is 

by evaluating how our approach performs in case of study sites having different area sizes – i.e., 

very low sample size to very high – and to see if the combined influence value remains stable 

throughout or is having any relation with the area considered. This can be also tested for other 

forest plantation species as well as trees of different age groups and identify patterns existing 

between tree characteristics and algorithm performances. Another thing to keep in mind, is the 

cost associated with LiDAR, which makes this approach economically feasible for only large study 

areas (TILLEY et al., 2004; SILVA et al., 2017). Also, updating data over time using LiDAR can 

be perceived as a hurdle for the same reason. However, if we are willing to adopt a different 

perspective, that views the potential reduction of field work cost as a compensation for ALS data 

acquisition, then multiplying the ALS data collection frequency can be treated as a reasonable 

initiative. If not, data fusion techniques – that integrate LiDAR with other more affordable methods 

such as UAV remote sensing or other freely available cutting-edge technologies – can be deemed 

as alternative strategies (SANKEY et al., 2018; YANG; CHEN, 2015; HUO et al., 2018). For 

translating this framework from the research to the operational arena requires additional work, 

especially that tests its applicability on multiple sites and verifying stability in results, which needs 
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more investment in terms of field work and analysis. Even so, the expected benefits, that comes in 

form of reduced inventory cost, will be a huge leap for the forest management sector.  

 

5. CONCLUSIONS 

 Improving Eucalyptus industrial plantations productivity requires the development of 

strategies that are tailored to its unique characteristics. Which reinforces the importance of a 

framework with more robust and accurate techniques that consider auxiliary data in the process of 

estimating stem total volume. In this study, we evaluated the impacts of different modeling 

methods and sample size on the accuracy of  volume estimates predicted from LiDAR data in a 

Eucalyptus forest plantation in Brazil. 

 Our results showed that the precision of LiDAR derived stem total volume estimates was 

considerably impacted by the prediction method while varying sample sizes. Higher levels of 

accuracy were attained employing linear regression model (OLS), which was able to provide 

comparable results to the traditional forest inventory approaches using only 40% of the total field 

plots, followed by the random forest (RF) algorithm with identical sample size value. The precision 

of the combined impact of sample size and modeling methods was demonstrated through a relative 

RMSE and bias less than 15%, which is equal to or less than the level of error that is traditionally 

accepted in a conventional field inventory. 

 The methods used in this study formulate a framework for integrating field and LiDAR 

data, highlighting the importance of sample size for volume estimates. The major takeaway from 

our study indicates that collecting larger field reference data is not necessarily the most effective 

option for improving the accuracy of volume estimates. Thus, this study should assist the selection 

of an optimal sample size that minimizes estimation errors, processing time, plot establishment 

costs, and consequently increases the monitoring and managing efficiency in Eucalyptus stands. 

 Future directions for this research include the use of a larger number of datasets that tests 

additional features (i.e. plot size, LiDAR pulse density, GPS location errors); integrating multi-

sensor data fusion approaches (i.e. terrestrial or UAV LiDAR, radar); and estimating forest 

attributes at an individual tree level. Testing advancing methods like deep learning would also be 

a further possible extension of our work. Additionally, the development of further studies to 

increase our understanding of the statistical modelling methods set-up role in the volume 

estimation of this forest type would be able to throw more light on ideas presented herein. 
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 We hope that the findings from our study give more credibility and encouragement for 

respective specialists to pursue research in directions that will ultimately results in development 

of site-independent ALS data based models for predicting a wide range of forest attributes. 
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ABSTRACT 

Light Detection and Ranging (LiDAR) has emerged as a well-suited technology for accurate 

estimates of structural parameters both in natural and industrial plantation forest ecosystems. 

However, studies of LiDAR-derived images to retrieve forest attributes at individual tree level are 

still not as widely developed as plot or stand level approaches. A variety of approaches can be used 

to detect and delineate individual trees, but due to inadequate tree finding methods, significant 

omission and commission errors occur frequently in the segmentation results. Aiming errors 

reduction and accuracy refinement, this study evaluates a novel framework to automatically detect 

individual Eucalyptus trees. The study was conducted at three farms located in the state of São 

Paulo, in southeast Brazil. Data from field inventory and LiDAR of the year 2013 were used. For 

the analysis, a total of 15 circular plots of 400 m² each were used. In order to access the more 

accurate tree detection method the following algorithms were tested: Dalponte, Silva and 

Watershed. Results showed that Dalponte and Silva algorithms presented more accurate results 

with a total difference of 101 trees (15.19%) each from the reference field data. The performance 

of individual-tree detection was better using Silva and Dalponte algorithms with errors ranging 

from 2.22% to 26.19%. When evaluating the tree detection quality, it was observed that the use of  

Silva algorithm presented slightly better results, mainly due to the lower number of comission and 

omission errors, resulting in better F-scores in most of the sample plots. 

 

Key-words — LiDAR, Forest Inventory, 3D tree segmentation, individual tree detection, Remote 

Sensing. 
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em plantios de Eucalyptus spp. a partir de dados LiDAR. 2019. Orientador: Emanuel Araújo Silva. 

Co-orientadores: Carlos Alberto Silva e Gabrielle Hambrecht Loureiro. 

 

RESUMO 

 

Light Detection and Ranging (LiDAR) surgiu como uma tecnologia adequada para estimativas 

precisas de parâmetros estruturais em ecossistemas florestais de plantações naturais e industriais. 

No entanto, estudos de imagens derivadas de LiDAR para obtenção de atributos florestais em nível 

de árvore individual ainda não são tão amplamente desenvolvidos quanto as abordagens em nível 

de parcela ou talhão. Uma variedade de abordagens pode ser usada para detectar e delinear árvores 

individuais, mas devido a métodos inadequados de identificação de árvores, erros significativos 

de omissão e comissão ocorrem com freqüência nos resultados da segmentação. Com o objetivo 

de redução de erros e refinamento da precisão, este estudo avalia um novo framework para 

detecção automática de árvóres de Eucalipto individuais. O estudo foi realizado em três fazendas 

localizadas no estado de São Paulo, no sudeste do Brasil. Dados do inventário de campo e de 

LiDAR do ano de 2013 foram utilizados. Para a análise, foram utilizadas 15 parcelas circulares de 

400 m² cada. A fim de acessar o método mais preciso de detecção de árvores, foram testados os 

seguintes algoritmos: Dalponte, Silva e Watershed. Os resultados mostraram que os algoritmos 

Dalponte e Silva apresentaram resultados mais precisos com uma diferença total de 101 árvores 

(15.19%) cada um a partir dos dados de campo de referência. Ambos algoritimos apresentaram  

erros variando de 2,22% a 26,19%. Ao avaliar a qualidade da detecção arbórea, observou-se que 

o uso do algoritmo Silva apresentou resultados ligeiramente melhores, principalmente pelo menor 

número de erros de comissão e omissão, resultando em melhores F-scores na maioria das parcelas 

amostradas. 

 

Palavras-chave — LiDAR, Inventário Florestal, Segmentação de árvores 3D, Detecção Individual 

de Árvores, Sensoriamento Remoto. 
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1. INTRODUCTION 

 Eucalyptus spp. are the most important short fibre source for pulp and paper production in 

southeast Brazil. Extensive Eucalyptus spp. plantations have been established in this region since 

the early 1970s due to their rapid growth rate. Forest inventory in plantation of Eucalyptus hybrid 

clones is usually conducted annually to monitor growth, identify problematic conditions during 

initial growth stages, and determine optimal harvest time later in the growth cycle (IBÁ, 2018). 

The most usual method for estimating attributes such as tree density (tree/ha), and tree 

characteristics such as height (Ht), basal area (BA), and stem volume (V) is to physically sample 

them in the field. However, individual tree field measurements over large areas can become 

uneconomical, time and effort consuming, and hence are not ideal for studies dealing with periodic 

data collection (GARDNER et al., 2008; SILVA et al., 2016). 

 Individual tree information is important in many forestry-related activities, such as 

selective cuts, silviculture treatment, and tree growth modelling (LICHSTEIN et al., 2010). The 

density of trees in a given locality is also considered a relevant information due to the fact it is 

highly associated to biometric variables of a forest stand, such as basal area and volume. (SILVA 

et al., 2017) According to the aforementioned authors, the detection of individual trees 

automatically is a fundamental point in studies that aim to extract biometric information at the tree 

level. Individual tree detection (ITD) refers to partitioning the raw LiDAR data into objects 

representing individual trees based on the arrangement of the returns in space (BREIDENBACH 

et al., 2010). In this context, approaches for deriving more efficient, less expensive and time-

consuming forest inventory information based on remotely sensed data have become of great 

utility and interest (GAMA et al., 2010).  

 Airborne Light Detection and Ranging (LiDAR), is now considered an important remote 

sensing technique for plot- and stand-level forest inventory, mainly because this technology can 

quickly provide highly accurate and spatially detailed information about forest attributes across 

entire forested landscapes (SILVA et al., 2014). Key LiDAR applications include high accuracy 

retrieval of tree density, stem volume, above ground carbon, leaf area index and basal area 

(ANDERSEN et al., 2005; ROBERTS et al., 2005; HUDAK et al., 2006; COOPS et al., 2007; 

SILVA et al., 2014). 

 The use of airborne LiDAR to retrieve forest attributes at the tree level is promising, 

however, not as widely studied as plot- or stand-level approaches (SILVA et al., 2016). A LiDAR-
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derived Canopy Height Model (CHM) can be used for detecting individual trees, delineating tree 

crowns, and subsequently estimating biophysical attributes such as biomass and stem volume 

(POPESCU, 2007; FALKOWSKI et al., 2009; HU et al., 2014; DUNCANSON et al., 2015). 

Individual-tree attributes are predicted following the individual tree detection and metrics 

extraction, however, the accurate prediction of tree-level attributes is highly dependent on the 

methods used to detect and extract individual-tree and forest structure as well (KANKARE et al., 

2015).  

 A variety of approaches can be used to detect and delineate individual trees from LiDAR-

derived CHMs. These include identifying local maxima (POPESCU et al., 2003; WEINACKER 

et al., 2004; FALKOWSKI et al., 2008; FALKOWSKI et al., 2009) for tree detection, as well as 

region growth (HYYPPA et al., 2008; SOLBERG et al., 2006; PANG et al., 2008), valley 

following (LECKIE et al., 2003), and watershed (CHEN et al., 2007; JING et al., 2012) for tree 

crown delineation. As LiDAR remote sensing techniques are undergoing rapid improvement along 

with the availability of high spatial resolution remotely sensed imagery there is potential for 

conducting and automating high accuracy forest inventory and analysis in a cost-effective manner.  

In this context this study aims to evaluate the ability of automated tree identification algorithms to 

accurately perform a LiDAR-based individual-tree detection in Eucalyptus spp. plantations in 

southeast Brazil. 

 

2. MATERIALS AND METHODS 

2.1. Study Area 

The study area consisted of three farms located in the municipalities of Pilar do Sul and São 

Miguel Arcanjo, southeast region of the state of São Paulo, Brazil (Figure 1). According to the 

Köppen classification, the climate of the region is characterized as humid subtropical, with wet 

and hot summers and dry and cold winters. Mean annual precipitation is ~1700 mm; mean annual 

temperature is 18.8 °C (ALVARES et al., 2013). The topography in the selected plantations 

ranges from mildly to very hilly with an elevation ranging from 659 m to 1210 m. The soils of 

the region are predominantly red and yellow red latosol, all classified as clayey or very clayey. 

The farms contained industrial eucalyptus plantations managed by Suzano S.A., a pulp and 

paper company located in São Paulo state, Brazil. The plantations were composed of hybrid 

clones of two Eucalyptus species, Eucalyptus grandis W. Hill ex Maid and Eucalyptus urophylla 
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S.T. Blake. All the trees were planted predominantly in a 3m x 2m grid configuration, resulting 

in an average density of 1,667 trees ha-1. Stand age across the farms was variable and ranged from 

2 to 6 years. 

 

2.2 Field Data 

The study was based on data collected in a set of temporary and permanent sample plots 

installed for the purpose of annual forest inventory by the company. A total of 15 circular plots 

of 400 m² each were randomly established across the three farms. In each sample plot, individual 

trees were measured for diameter at breast height (DBH; cm) at 1.30 m, and a random subsample 

(15%) of trees for tree heights (Ht; m). Measurements were carried out during the months of Abril 

to November of 2013. All the sample plots were georeferenced in the field using a geodetic GPS 

unit with differential correction capability (Trimble Pro-XR). The projected coordinate system 

used was UTM SIRGAS 2000, zone 23 S. All the field measurements were provided by the 

inventory team of Suzano S.A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of study area and plots. (A) Brazil and São Paulo State; (B) São Paulo 

State and the municipalities of Pilar do Sul and São Miguel Arcanjo; (C) Study area within the 

municipalities of Pilar do Sul and São Miguel Arcanjo; (D) Field plots in the study area. 
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2.2.LiDAR data collection specifications and processing 

An airborne LiDAR survey was conducted in the study area on December 5th, 2013 using 

a Harrier 68i sensor (Trimble, Sunnyvale, CA, USA) mounted on a CESSNA 206 aircraft. The 

characteristics of the LiDAR data acquisition are listed in Table 1. LiDAR data processing steps 

were performed using FUSION/LDV 3.7 software (US Forest Service, Washington, DC, USA) 

(MCGAUGHEY, 2016) which provided three major outputs: the Digital Terrain Model (DTM), 

the Digital Surface Model (DSM), and the LiDAR-derived canopy structure metrics (CHM). 

 

Table 1. Airborne LiDAR survey specifications. 

Parameter Value Parameter Value 

Scan angle (°) ±45° 

Footprint 0.33 m 

Flying altitude 438 m 

Swath width 363.11 m 

Overlap 100% (50% side-lap) 

Scan frequency  300 kHz 

Average point density 10 pts.m-2 

 

In order to differentiate between ground and vegetation points, the original point cloud data 

were initially filtered using a classification algorithm available in the groundfilter function in 

FUSION/LDV. The gridsurfacecreate function was used to generate the 1-meter resolution 

Digital Terrain Models (DTMs), using the classified ground returns. The canopymodel tool was 

then used to interpolate vegetation points and to generate the Digital Surface Models (DSMs) and 

Canopy height models (CHM). The clipdata function was applied to obtain normalized heights 

by subtracting the DTMs elevations from each LiDAR return. Normalized point clouds were 

subset within the field sample plots of interest using the polyclipdata function. The cloudmetrics 

tool with a height and cover thresholds of 1.37 m were used to compute the canopy cover 

(COV,%), within sample plots. COV was calculated as the number of lidar first returns above 

1.37 m, divided by the total number of first returns. LiDAR-derived CHM often contain height 

irregularities within individual-tree crowns (data pits) which reduce accuracy in tree detection 

and subsequent extraction of biophysical parameters (SHAMSODDINI et al., 2013). Therefore, 

the pit-free algorithm, developed by Khosravipour et al., (2014) was used to generate a pit-free 

CHM though a workflow implemented in LAStools (ISENBURG, 2017).  
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2.4. Individual Tree Detection and HMAX Extraction 

 Individual tree segmentation was performed in R (R Development Core Team 2015) using 

the lastrees function from the lidR package (ROUSSEL et al., 2017). The lastrees function uses 

several possible algorithms to search for treetops in the CHM based on local maxima, matching 

lidar and field trees automatically. This method identifies the locations of maximum brightness 

intensity of the image in individual bands, using a mask (WULDER et al., 2000). In this case, the 

brightest areas refer to the highest areas of the canopy. A 5 x 5 moving window with a fixed tree-

top window size (TWS) was used on a CHM smoothed by a mean smooth filter with fixed 

smoothing window size (SWS) of 3 x 3, which was chosen based on the best results obtained in 

the work of Silva et al. (2016). 

 In order to access the more accurate tree detection method 3 algorithms (Dalponte, 

Watershed, and Silva) were tested. The number of trees detected (NTD) per plot from LiDAR were 

manually compared with field-based data and an orthomosaic, and then evaluated in terms of true 

positive (TP, correct detection), false negative (FN, omission error) and false positive (FP, 

commission error). The accuracy of the detection was further evaluated for recall (1), precision (2) 

and F-score (3) according to Li et al. (2012), using the following equations (GOUTTE; 

GAUSSIER 2005; SOKOLOVA et al. 2006): 

 

𝑟 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  

𝑝 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  

𝐹 = 2 ∗ ((𝑟 ∗ 𝑝) (𝑟 + 𝑝)⁄ ) 

 

 Recall is inversely related to omission error and represents the tree detection rate. Precision 

is inversely related to commission error and describes the rate of correct detections. F-score is used 

to represent the harmonic mean of recall and precision, which takes both commission and omission 

errors into consideration. Hence, a higher F-score indicates that both commission and omission 

errors are lower (Li et al., 2012). Recall, precision and F-score ranges from 0 to 1, and the F-score 

will become higher with higher p and r values. 

 The results of each method detection were also evaluated by the Chi-square test, 

considering that the expected frequency was the real value of trees in the plot (the visible trees 

(1) 

(2) 

(3) 
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observed in the field) and the value observed was the total of trees detected TP and FP). Chi-square 

values calculated for each method was compared with the tabulated value of the test, considering 

the probability of 95%, applying the equation 4: 

 

𝑋𝑘
2 =  ∑ ∑

(𝑂𝑖𝑗 − 𝐸𝑖𝑗)²

𝐸𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

were Oij= observed number of trees; and E ij= expected number of trees. 

  

 The total number of trees observed in each plot was also compared to the total number of 

trees detected in each method, in order to evaluate the overall quality of the detection of each 

method. 

 

3. RESULTS 

 The total number of trees detected in the 15 Eucalyptus plots with the different methods is 

shown in Table 2. All methods tended to underestimate the results in most plots, with errors 

ranging from 2.22% to 56.86%. Dalponte and Silva algorithms presented more accurate results 

with a total difference of 101 trees (15.19%) each from the field data. The average number of trees 

detected by both algorithms did not differ significantly from the values observed in the field. 

Watershed was the method that underestimated the number of trees the most with a total difference 

of 213 trees (32.03%), presenting a significant difference by the chi-square test compared to the 

field data. The analysis of the tree detection quality in the plots is presented in Table 3.  

 It was observed that for most of the cases the best F-scores was obtained with the Silva 

algorithm. The overall F-score of the Silva algorithm was 0.87, followed by the detections with 

Dalponte algorithm (F-score 0.87) and Watershed algorithm (F-score 0.77). Both Silva and 

Dalponte algorithms stands out for the higher values of r and p, which reached maximum value 

(1) in 3 plots.  

 The results of the detection with the applied methods is illustrated in Figure 2 for plots 7 

(F-score 0.76), and 12 (F-score 0.95), which presented respectively the lowest and the highest F-

scores with the use of Silva and Dalponte algorithms. In plot 12 it is observed that the detection 

was the most accurate, while the other methods tended to not identify some trees. The highest FP 

numbers were observed in the Watershed followed by the Dalponte methods. In plot 7, it was 

 (4) 
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observed a high occurrence of FN, especially of trees with smaller crowns, some not detected in 

most of the methods. Errors of the FP type were observed mainly in larger crowns, by the 

identification of two points in the same crown. The use of Dalponte algorithm tended to present 

more FP type errors, detecting more than one point in some cups. FN errors were also more 

frequent using Dalponte algorithm, especially in smaller cups. Although Silva and Dalponte 

methods compared presented slightly different performances both methods were found to provide 

comparable results. 

 

Table 2. Results of tree detection by the different algorithms. 

  
 Watershed Dalponte Silva 

Plots Census N Dif % N Dif % N Dif % 

1 47 40 7 14.89 51 4 8.51 51 4 8.51 

2 33 27 6 18.18 36 3 9.09 36 3 9.09 

3 44 37 7 15.91 50 6 13.64 50 6 13.64 

4 51 32 19 37.25 44 7 13.73 44 7 13.73 

5 51 22 29 56.86 39 12 23.53 39 12 23.53 

6 47 36 11 23.40 43 4 8.51 43 4 8.51 

7 37 28 9 24.32 31 6 16.22 31 6 16.22 

8 41 37 4 9.76 46 5 12.20 46 5 12.20 

9 38 19 19 50.00 30 8 21.05 30 8 21.05 

10 46 27 19 41.30 36 10 21.74 36 10 21.74 

11 42 23 19 45.24 31 11 26.19 31 11 26.19 

12 39 30 9 23.08 35 4 10.26 35 4 10.26 

13 47 24 23 48.94 37 10 21.28 37 10 21.28 

14 45 29 16 35.56 44 1 2.22 44 1 2.22 

15 57 41 16 28.07 47 10 17.54 47 10 17.54 

∑Plots 665 452 213* 32.03 600 101ns 15.19 600 101ns     15.19 

N: number of trees detected by the different methods; Dif: difference between census and detection; %: percentage 

difference; * and ns: respectively, significant and non-significant by the chi-square test at 95% probability. 
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Figure 2. Detection of trees on plots by the algorithms: (A) Watershed (B) Dalponte (C) Silva. 
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Figure 2. Detection of trees on plots by the algorithms: (A) Watershed (B) Dalponte (C) Silva. 
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Figure 2. Detection of trees on plots by the algorithms: (A) Watershed (B) Dalponte (C) Silva. 
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 The summary of the detection analysis related to the number of trees detected and the 

quality of the detection is presented in Table 4. It was observed that both methods (Silva and 

Dalponte) using the lastrees function from the lidR package did not present significant difference 

when comparing the experimental results with the real number of trees in all the plots. In the 

general ranking, was observed that the Silva method presented a slightly better result for the quality 

detection, being the first placed. Subsequently, Dalponte method come in second, followed by the 

Watershed method  in third. 

 

Table 4. Summary results of the tree detection with all methods tested in the 15 plots. 

 

Method TP FP FN F-score Rank 

Silva 553 47 112 0.87 1 

Dalponte 552 48 113 0.87 2 

Watershed 431 21 234 0.77 3 

TP: true positive; FP: false positive; FN: false negative; F-score.  

 

4. DISCUSSION 

 Accurate information on forest attributes at individual-tree level has a decisive impact on 

decision-making processes in forest and timber management. The most accurate method of 

estimating these attributes is to physically sample them in the field. However, individual tree field 

measurements are limited by budgets and time, making them impractical over large areas. As a 

result of the need for individual tree-based attributes and finer scale descriptions of stands, airborne 

LiDAR technology has become the main remote sensing technique for individual tree detection 

(ITD). Since an accurate individual tree detection is highly dependent on the applied methods, this 

study presents an investigation of simplified automated frameworks for lidar-based individual-tree 

detection. 

 We found that the successful tree detection using the CHM based on local maxima 

technique was greatly affected by the different methods. The performance of individual-tree 

detection was better using Silva and Dalponte algorithms with errors ranging from 2.22% to 

26.19%. When evaluating the tree detection quality, it was observed that the use of  Silva algorithm 

presented slightly better results, mainly due to the lower number of false positives. The majority 

of the commission errors (FP) occurred in large, especially irregular crowns. False negatives 
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(omission errors) were also observed, generally related to smaller or forked trees (with two visible 

crowns, but only one detected). It was also observed that all the methods presented higher number 

of false negatives than false positives, confirming that most methods underestimated the real 

number of trees. 

 It was noted that even though Dalponte and Silva methods did not differ significantly 

between each other in total number of trees detected, they did not necessarily present the same 

results when the quality of detection was analyzed in the sample plots. The Silva algorithm attained 

better F-scores in most of the sample plots. According to Tanhuanpää et al. (2016), this is because 

the occurrence of both omission and commission errors may end up masking errors in the total tree 

count, which reinforces the importance of analyzing factors such as F-scores in order to evaluate 

the quality of the methods. 

 The tree-detection results from this study are comparable to the results obtained in other 

studies using local maxima approaches. Li et al. (2012), using an individual tree segmentation 

method from LiDAR data in a mixed conifer forest in the US, showed that the algorithm detected 

86% of the trees (“recall”), and 94% of the trees were segmented correctly (“precision”), with an 

overall F-score of 0.90. Vega et al. (2014), when segmenting individual trees in a conifer plantation 

in France, reported overall recall, precision, and F-score of 0.93%, 0.98%, and 0.95, respectively. 

Khosravipour et al. (2014), in a mixed forest in France, achieved an overall accuracy of 70.6%.  

Mohan et al. (2017) obtained a F-score ranging between 0.73 and 0.95 in an open canopy forest 

area in the US, while Huang et al. (2018) found F-scores ranging from 0.74 to 0.90 to a similar 

typology with different densities. In Eucalyptus plantations using local maxima methods, Shinzato 

et al. (2017) obtained a detection success of only 58% of the trees. Guerra-Hernández et al. (2018), 

also in Eucalyptus plantations presented a detection success of about 79.6% with omission and 

commission errors of 20.8% and 6.5%. 

 Previous researches conducted by Falkowski et al. (2008) and Silva et al. (2016)  has shown 

that tree-detection accuracy tends to decrease with increasing canopy cover. In this study was 

found the same trend, where the accuracy of individual-tree detection measured by the F-score was 

inversely proportional to forest COV. Overall, commission errors were more prevalent in less 

dense test plots, and omission errors were more common where crowns overlapped. The influence 

of the tree’s geolocation absence can also be considered an unquantifiable source of uncertainty in 

the current study. However, Popescu (2007) reported that treetop positions might be determined 
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with higher accuracy using a CHM image detected from lidar rather than error-prone 

measurements derived from differential GPS in the field, especially in high-canopy-cover 

conditions that can degrade field GPS accuracy (WING et al., 2008).  

 It is also important to highlight that for the methods based on local maxima algorithms, the 

results are highly influenced by the smoothing parameters of the CHM and the tree-top window 

size (MOHAN et al., 2017; PANAGIOTIDIS et al., 2016). In general, a CHM smoothing is 

recommended, but in some tests, it was observed that the original CHM was more effective in 

some of the plots (MOHAN et al., 2017). Despite this, a smoothing window was chosen in this 

study due to some canopy irregularity (i.e. broken tree tops, forking trees and others), when the 

original CHM was selected, the number of false positives was larger. Guerra-Hernández et al. 

(2018) also observed that the use of a LiDAR derived CHM requires the application of a smoothing 

window for the correct detection of Eucalyptus trees using a local maxima filter. 

  

5. CONCLUSION 

 Predictions of plot-level tree attributes averages often do not provide a sufficient 

description of the stand for decision-making regarding management of forest resources. The 

capacity to make accurate predictions of not only the total stand parameters, but also of the 

frequency distribution of individual tree (tree lists), provides valuable information that can be used 

in forest inventories, especially in an operational context.  

 In this study, we investigated the ability of automated tree identification algorithms to 

accurately perform a LiDAR-based individual-tree detection in Eucalyptus spp. plantations. Two 

(Dalponte and Silva) of the three tested methods were able to detect individual trees with high 

accuracy in areas with < 70% COV. The precision and accuracy of LiDAR in detecting individual 

trees using the framework presented was demonstrated through detection quality parameters. Both 

Silva and Dalponte algorithms proved to be promising achieving comparable results, but the 

quality analysis showed a slightly superiority of the Silva tool, since it presented a non-significant 

difference between census and detection with lower commission and omission errors. 

 Future directions for this research include the test of additional features (i.e. GPS location 

errors, comparing other algorithms with different TWS and SWS); integration of a multi-sensor 

data fusion approaches (i.e. UAV LiDAR, spectral data, aerial photographs); and the estimative of 

dendrometric variables such as DAP, tree height, crown size and diameter, and thereby develop 
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predictive models for estimating aboveground biomass and stem volume at individual tree level. 

We hope that the promising results for individual-tree-level detection in this study will support 

and stimulate further research and applications not just in Eucalyptus spp. plantations management 

but other forest types for predicting a wide range of forest attributes.  
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GENERAL CONCLUSION AND RECOMMENDATIONS 

 The research presented in this dissertation aims to contribute to the understanding of how 

LiDAR remote sensing can be efficiently applied for predicting and mapping critical forest 

structural attributes, such as volume and individual-tree-level detection, at industrial forest 

plantations. Major findings, contributions of this dissertation and future research directions are 

summarized for each chapter and presented as follows: 

 Chapter 1 presented a framework to predict and map stem total volumes in industrial 

Eucalyptus spp. plantations from LiDAR through the comparison of ten parametric and 

nonparametric modeling methods combined with varying the reference data (sample) size. The 

results of this chapter demonstrated that LiDAR data combined with OLS method, using only 40% 

of the total field plots could provide reliable estimates of total volumes. When LiDAR-derived 

estimates of stem volume were compared to reference forest inventory data, the accuracy of plot-

level total volumes were high, presenting an average of relative root mean square error (RMSEr) 

of only 12.95%. Accurate estimates of crown attributes at the highest attainable spatial resolution 

is desired to increase the efficiency of monitoring and managing Eucalyptus spp. plantations. 

Future research should focus on estimating other forest attributes and at the tree level as well. 

Crown estimates would be highly desired information to assist in common forestry tasks, such as 

in thinning operations. Also, crown attributes could be used in combination with field data to fit 

taper models and improve the accuracy of volume estimates.  

 In Chapter 2 a framework to automatically detect individual trees and evaluate the detection 

efficacy was developed. Individual tree locations were estimated with high accuracy (90.22%), 

especially in low-canopy-cover conditions. While the methodology developed here shows 

promising results, further work is necessary in order to refine aspects of the approach to increase 

accuracy when estimating the total tree count. Future directions for this research include the 

combined use of spatial data, airborne and terrestrial lidar to better describe the structure of 

individual trees. Besides crown height and crown projected area, additional crown metrics, such 

as crown volume and surface area, should be computed and tested as new predictors for estimating 

not only the number of trees but other important forest attributes at tree-level as well, such as basal 

area and volume. As Unmanned Aerial Vehicle (UAV) remote sensing technologies and methods 

improve, there is potential for combining airborne lidar-derived DTM from a previous acquisition 

with UAV photogrammetry and Structure from Motion (SfM) algorithms for effectively 
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monitoring and mapping forest attributes at the individual tree level in Eucalyptus spp. plantations 

in a cost-effective manner. 

 There are many challenges yet to be faced in order to use the full potential of information 

provided by LiDAR. Other studies should be conducted in order to evaluate this methodology for 

other plantations and forested environments, more tree spacing topographic conditions, other 

algorithms and parameters, and test the accuracy of estimating other characteristics such as DBH 

and crown area at landscape, plot and tree-level, which are important factors required for 

estimating biomass and stem volume. Formulating methods to increase stem volume estimates 

efficiency and developing strategies that optimize tree detection algorithms based on the 

characteristics of the point cloud can surely open new windows in LiDAR data analytics. We hope 

that the results presented and discussed here will stimulate further research and applications of 

LiDAR remote sensing not just in experimental scenarios but in operational modes as well. 


